Читаем Газета Троицкий Вариант # 48 полностью

В.З.: Нет-нет, это особые системы. Система может быть изолирована, пожалуйста, но это особый класс динамических систем. Ими обладает такая избранная аристократия динамических систем с дополнительными инвариантами, у которых группы внутренней симметрии существенно выше, чем у других. До сих пор, начиная с XIX в., было известно довольно мало интегрируемых систем. Ну, вот движение твёрдого тела: если мы бросим ложку и будем описывать, как она движется, движение описывается эллиптическими функциями. Это интегрируемая система. Есть симметричный волчок, закреплённый в одной точке — интегрируемая система. Движение частицы в центрально-симметричном поле; движение частицы в поле двух кулоновских центров. Скажем, есть две звезды, и между ними движется третье тело — интегрируемая система. Каждая интегрируемая система является базисом для целой огромной науки, потому что реальные системы часто близки к интегрируемым, но не интегрируемы.

Б.Д.: Они не настолько сильно связаны внутри себя.

В.З.: Да, они не настолько глубоко симметричны, они приближенно симметричны. И вот по теории возмущения к интегрируемым системам и строилась вся наука вплоть до 1971 г., когда было обнаружено (наша работа с академиком Л.Д. Фаддеевым), что существуют интегрируемые системы с бесконечным числом степеней свободы, сильно нелинейные, так называемые уравнения Кортевега де Фриза. И потом их пошли открывать: то, что описывает движение соли-тонов в оптических волокнах, — это так называемое нелинейное уравнение Шредингера. Оно тоже интегрируемое, и это было найдено в моей (совместной с А.Б. Шабатом) работе. Она является одной из двух, наиболее цитируемых работ российских учёных, которые Вы можете найти на сайте Scientific.ru, — на неё, по-моему, около 3 тыс. ссылок.

Б.Д.: В чём специфика тех объектов, которые были постулированы в 1971 г.? Увеличение количества степеней свободы в чём отражается?

В.З.: Смотрите, у этой ложки шесть степеней свободы. Вы можете в трёх направлениях двигать и в трёх направлениях вращать. Если вы перейдёте в систему центра масс, которые падают свободно, то там останется три степени. А солитон — это теория мелкой воды в море. Это, разумеется, система с бесконечным числом степеней свободы, т.е. можно разнообразно эту воду возмущать. Тем не менее, это интегрируемая система: вы можете аналитически описать любое возмущение — что будет происходить до самого конца.

Б.Д.: То есть это возможность рассмотреть как интегрируемую систему гораздо более разнообразные классы.

В.З.: Гораздо более разнообразные! Оказалось, что их гораздо больше, чем предполагалось, и открытие новых интегрируемых систем — это был такой бум 1970-х годов. К концу 70-х — середине 80-х всё, что можно, было выработано и найдено. Например, мы открыли, что интегрируемы уравнения Эйнштейна в частных, но важных случаях, описывающих «чёрные дыры» [5]. «Чёрные дыры», с математической точки зрения, оказались теми же солитонами.

Д.И.: Всё есть солитон.

А.К.: Нет, всё есть поэзия, на самом деле. Потому что, как Владимир Евгеньевич описывал, не помню уже что: это же аристократия этих структур!

Б.Д.: Собственно, интегрируемые системы.

В.З.: Мне бы хотелось вам рассказать о том, чем я занимаюсь последнее время. Я крайне увлечён проблемой так называемых волн-убийц. Это действительно достаточно загадочное явление и с точки зрения физики, и с точки зрения математики. Оно сейчас привлекает большой интерес ученых, это одна из горячих точек развития науки, и мы с моими учениками непрерывно им занимаемся.

Иногда в океане бесследно пропадают суда. Раньше моряки рассказывали такие истории: «Плыву я по относительно спокойному морю. Есть волны, но не очень большие. Вдруг возникает огромная волна, высотой метров в 20, и идет на меня. Через минуту она — раз! — ударяется о моё судно. Я не успеваю ничего сделать: ни изменить курс, ни дать сигнал SOS. Всё, судно утонуло, дай бог, как-нибудь удастся выбраться». Морякам не верили, считали, что это морские байки. Но существует компания Ллойда, которая фиксирует места гибели кораблей.

Было известно, что есть такой район в Мировом океане, к юго-востоку от Африки до Кейптауна, где суда пропадают бесследно чаще, чем в других местах. А потом стали бурить нефтяные скважины на шельфе, стали строить большие башни, чтобы на них устанавливать буровое оборудование. Ничего не стоило на этих шахтах установить приборы для измерения высоты поверхности и записывать постоянно уровень волнения. Кстати, это очень важно, потому что высота башни должна быть спроектирована так, чтобы самая большая волна не могла её захлестнуть, иначе будут неприятности.

Б.Д.: То есть и нефтяникам важно знать, какова ситуация.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже