" ЗАВТРА". Зубы, кости, суставы… Это ещё можно понять и принять. А насколько реальны утверждения о том, что завтра можно будет "напечатать" послойно если не всего человека, то, по крайней мере, какие-то его органы, целиком состоящие из живых клеток, а не из костной и соединительной ткани, которые мы уже смогли воспроизводить достаточно уверенно?
Иван КОНОВАЛОВ.
Пока что мягкие, "живые" человеческие органы и их печать находятся за пределами возможностей аддитивных технологий. Я здесь подчёркиваю именно слово "технологии", поскольку мы говорим не о каких-то смелых опытах в научных лабораториях, а о массовом явлении, которое влияет на нашу жизнь, изменяет наши представления о ней. Известно, что в США проводятся уже около десятка лет опыты по печати небольших участков достаточно простых тканей — кожи, мышц, кровеносных сосудов. Наибольшим успехом было создание в 2006 году из человеческих клеток имплантатов мочевых пузырей, с которыми люди живут и сегодня. Однако сама индустрия печати человеческих органов из живых клеток только зарождается, в настоящее время большая часть таких работ выполняется практически вручную, а при помощи 3D-делают только незначительную часть — создание плоской структуры слоя ткани. Но перспективы в этой сфере, конечно, захватывающие.Это обычная ситуация — например, один из столпов современной 3D-печати, так называемая стереолитография (сокращенно — SLA) появилась на уровне лабораторных опытов ещё в 1960-х годах, когда впервые были получены стабильные результаты в виде "засветки" лазером фотополимеров в жидком состоянии, в результате чего в толще раствора полимера в жидком состоянии с помощью когерентного света формировали сложную пространственную структуру. Однако первый SLA-принтер был запатентован только в 1986 году, а создан в виде эффективного промышленного изделия десятилетием позже. Ну, а на нынешние высокие стандарты качества SLA-технология и вовсе вышла в середине 2010-х годов. Это обычный "шаг технологии": от идеи и опыта до массового применения и устоявшейся технологии всегда проходят не месяцы, но годы и даже десятилетия. Поэтому печать живого человеческого сердца я жду лет через десять, не раньше.
" ЗАВТРА". Живое сердце? А что, есть неживое? Оно-то зачем?
Иван КОНОВАЛОВ.
Не смейтесь. Неживые, инертные модели органов мы печатаем на 3D-принтерах уже сегодня. И нужны они не пациентам, а врачам. Печень, почка, поджелудочная железа — это сложные трёхмерные органы, которые хоть и похожи у всех людей, но имеют разное положение полостей, протоков, сосудов и нервов, находящихся в них. В силу чего любой хирург, который проводит операцию на живом органе (а других-то нет!) какие-то подробности об их строении часто выясняет уже во время операции, когда его скальпель доходит, например, до неприятной вены, которая мешает работе. Да, до момента операции хирург всегда изучает и рентгеновские снимки, и плоские разрезы КТ, но всё равно — он работает с трёхмерным органом, работает в состоянии стресса и ограничений по времени, может допускать ошибки, действовать в неудачном ключе. А мы поступаем иначе: на основе последовательных срезов КТ делаем точную трёхмерную модель нужного человеческого органа из материала, похожего на живые ткани (пластик или силикон), после чего она попадает к хирургу — и он уже может спокойно разработать план операции, посмотреть, куда ведут его разрезы скальпеля, не пересекают ли они важные артерии или нервные окончания. И это, как оказалось, радикально экономит время — по оценкам, время операции сокращается в два-три раза, вместо двух-трёх часовой операции можно иногда справится за сорок минут, если у врачей была модель оперируемого органа. А это уже, согласитесь, технология.То же — и в создании так называемых хирургических шаблонов, когда из такого же инертного материала создаётся накладка на орган или на ткань, которая не позволяет хирургу отклониться от оптимального направления в положении хирургического инструмента, повредить не те ткани или соседние здоровые органы. Тут самый наглядный пример тоже будет из области стоматологии: сегодня мы печатаем на 3D-принтерах высокоточные хирургические шаблоны для установки зубных имплантатов. В прошлом, до их прихода в медицину, имплантаты, особенно устанавливаемые в нежную верхнюю челюсть, иногда пробивали её верхний свод и выходили своими концами в слизистую или даже в полость гайморовой пазухи, вызывая потом постоянные воспаления в ней. Сейчас это осложнение исключили — в том числе и за счёт применения хирургических шаблонов.