Читаем ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда полностью

Существовали «доказательства», что эта серия равняется 0, 1, 1/2 — а может быть, и другим числам. Из подобных противоречивых результатов выросла более полная и глубокая теория бесконечных рядов. Более актуальный пример — противоречие, с которым мы сталкиваемся в данный момент; это противоречие между тем, как мы действительно думаем, и тем, как исчисление высказываний имитирует наше мышление. Это продолжает быть источником дискомфорта для многих логиков; множество творческих усилий было приложено к тому, чтобы улучшить исчисление высказываний, чтобы оно не было таким жестким. Одна из попыток, изложенная в книге А. Р. Андерсона и Н. Белнапа «Следствие» (A.R. Anderson & N.Belnap, «Entailment»),[15] включает «уместный подтекст», с тем, чтобы придать символу «если — то» действительную причинность или, по крайней мере, некоторую связь со смыслом. Взгляните на следующие теоремы исчисления высказываний:

<P э <Q э P>>

<P э<Q V ~Q>>

<<Р > э Q>

<<P э Q>V<Q э P>>


Эти и другие подобные теоремы показывают, что первая и вторая части суждений типа «если… то» вовсе не должны иметь никакой связи для того, чтобы быть доказанными в исчислении высказываний. С другой стороны, «уместный подтекст» ставит некоторые ограничения на контекст, в котором может действовать правило вывода. Опираясь на интуицию, он говорит нам, что «что-то может быть выведено из чего-то только в том случае, если эти части как-то соотносятся между собой». Например, строка 10 в деривации выше была бы невозможна в данной системе — и это, в свою очередь, заблокировало бы вывод строчки <<P  ~PQ>.

Более радикальные попытки полностью отказываются от поисков непротиворечивости и полноты, пытаясь взамен симулировать человеческое мышление со всеми его противоречиями. Подобные исследования уже не ставят своей целью дать математике прочный фундамент; они занимаются изучением процесса человеческой мысли.

Несмотря на некоторые странности, исчисление высказываний обладает многими положительными чертами. Если рассматривать его как часть большей системы (что мы и сделаем в следующей главе), и знать наверняка, что сама эта система свободна от противоречий (мы будем в этом уверены), то исчисление высказываний выполняет все, чего мы можем от него ожидать: оно производит все возможные правильные умозаключения. Даже если противоречие все-таки будет обнаружено, мы можем быть уверены, что виновница этого — сама большая система, а не ее подсистема — исчисление высказываний.


Рис. 42. М. К. Эшер «Крабий канон» (1965)


Крабий канон

В один прекрасный день, Ахилл и Черепаха, прогуливаясь по парку, наталкиваются друг на друга.

Черепаха: Приветствую, г-н А.!

Ахилл: И я вас тоже.

Черепаха: Всегда рада вас видеть.

Ахилл: Вы читаете мои мысли.

Черепаха: В такой денек приятно пройтись; пожалуй, я пойду домой пешочком.

Ахилл: Неужели? Гулять, знаете ли, весьма полезно для здоровья.

Черепаха: Кстати, в последнее время вы выглядите как огурчик.

Ахилл: О, благодарю вас.

Черепаха: Не стоит. Не желаете ли угоститься моими сигарами?

Ахилл: Да вы, как я погляжу, филистер. По моему мнению, голландский вклад в эту область — значительно худшего вкуса, и я хочу попытаться вас в этом убедить.

Черепаха: Наши мнения по этому вопросу расходятся. Кстати, говоря о вкусах: несколько дней назад я была на выставке, где, наконец, увидела «Крабий канон» вашего любимого художника, М. К. Эшера. Какая красота! Как ловко он переворачивает тему задом наперед! Но боюсь, что для меня Бах всегда останется выше Эшера.

Ахилл: Не знаю, не знаю… Я уверен только в том, что меня не волнуют споры о вкусах. De gustibus non est disputandum.

Черепаха: Поговорим лучше о другом. Знаете ли вы, что я уже давно пытаюсь собрать полную коллекцию редких записей Баха — хоть это и отнимает много времени, но я считаю, что лучшего хобби не найти.

Ахилл: Ну и волокита! Не знаю, как кому-то могут нравиться такие вещи…

(Вдруг, откуда ни возьмись, появляется Краб. Он стремительно подбегает к друзьям, указывая на огромный синяк под глазом.)

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература