Существовали «доказательства», что эта серия равняется 0, 1, 1/2 — а может быть, и другим числам. Из подобных противоречивых результатов выросла более полная и глубокая теория бесконечных рядов. Более актуальный пример — противоречие, с которым мы сталкиваемся в данный момент; это противоречие между тем, как мы действительно думаем, и тем, как исчисление высказываний имитирует наше мышление. Это продолжает быть источником дискомфорта для многих логиков; множество творческих усилий было приложено к тому, чтобы улучшить исчисление высказываний, чтобы оно не было таким жестким. Одна из попыток, изложенная в книге А. Р. Андерсона и Н. Белнапа «Следствие» (A.R. Anderson & N.Belnap, «Entailment»),[15]
включает «уместный подтекст», с тем, чтобы придать символу «если — то» действительную причинность или, по крайней мере, некоторую связь со смыслом. Взгляните на следующие теоремы исчисления высказываний:<P
э <Q э P>><P
э<Q V ~Q>><<Р
~Р> э Q><<P
э Q>V<Q э P>>Эти и другие подобные теоремы показывают, что первая и вторая части суждений типа «если… то» вовсе не должны иметь никакой связи для того, чтобы быть доказанными в исчислении высказываний. С другой стороны, «уместный подтекст» ставит некоторые ограничения на контекст, в котором может действовать правило вывода. Опираясь на интуицию, он говорит нам, что «что-то может быть выведено из чего-то только в том случае, если эти части как-то соотносятся между собой». Например, строка 10 в деривации выше была бы невозможна в данной системе — и это, в свою очередь, заблокировало бы вывод строчки <<P
~P>эQ>.Более радикальные попытки полностью отказываются от поисков непротиворечивости и полноты, пытаясь взамен симулировать человеческое мышление со всеми его противоречиями. Подобные исследования уже не ставят своей целью дать математике прочный фундамент; они занимаются изучением процесса человеческой мысли.
Несмотря на некоторые странности, исчисление высказываний обладает многими положительными чертами. Если рассматривать его как часть большей системы (что мы и сделаем в следующей главе), и знать наверняка, что сама эта система свободна от противоречий (мы будем в этом уверены), то исчисление высказываний выполняет все, чего мы можем от него ожидать: оно производит все возможные правильные умозаключения. Даже если противоречие все-таки будет обнаружено, мы можем быть уверены, что виновница этого — сама большая система, а не ее подсистема — исчисление высказываний.
Крабий канон