Читаем ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда полностью

В каком-то смысле, использовать целых пять букв алфавита — это слишком большая роскошь, так как мы могли бы легко обойтись просто буквой а и штрихами. Впоследствии я действительно опущу буквы b,c,d, и e — результатом будет более строгая версия ТТЧ, сложные формулы которой будет немного труднее расшифровать. Но пока давайте позволим себе некоторую роскошь! Как насчет сложения и умножения? Очень просто: мы будем использовать обычные символы «+» и «*». Однако мы также введем требование скобок (мы мало помалу углубляемся в правила, определяющие правильно построенные строчки ТТЧ). Например, чтобы записать «b плюс с» и «b, умноженное на с», мы будем использовать строчки:

(b + с)

(b*с)

В отношении скобок послабления быть не может; опустить их — значит произвести неправильно сформированную формулу. («Формула?» Я использую этот термин вместо слова «строчка» лишь для удобства. Формула — это просто строчка ТТЧ.)

Кстати, сложение и умножение всегда будут рассматриваться как бинарные операции, то есть операции, объединяющие не более, чем два числа. Таким образом, если вы хотите записать «1+2+3», вы должны решить, какое из двух выражений использовать:

(S0+(SS0+SSS0))

((S0+SS0)+SSS0)

Теперь давайте символизируем понятие равенства. Для этого мы просто используем «=». Преимущество этого символа, принадлежащего Ч — неформальной теории чисел — очевидно: его весьма легко прочесть. Неудобство же при его использовании напоминает проблему, возникавшую при использовании слов «точка» и «линия» в формальном описании геометрии: если ослабить внимание, то легко спутать обыденное значение этих слов с поведением символов, подчиняющихся строгим правилам. Обсуждая проблемы геометрии, я различал между обыденными словами и терминами — последние печатались заглавными буквами. Так, в эллиптической геометрии ТОЧКОЙ было объединение двух точек. Здесь такого различия не будет, поэтому читатель должен постараться не спутать символ с многочисленными ассоциациями, которые он вызывает. Как я сказал ранее о системе pr, строчка --- не является числом 3; вместо этого она действует изоморфно с числом 3, по крайней мере, при сложении. То же самое можно сказать и о строчке SSS0.

Атомы и символы высказываний

Все символы исчисления высказываний, кроме букв, с помощью которых мы получали атомы (P, Q, R), будут использованы в ТТЧ; при этом они сохранят ту же интерпретацию. Роль атомов будут играть строчки, которые, будучи интерпретированы, дадут равенства, такие как S0=SS0 или (S0xS0) = S0. Теперь у нас есть достаточно данных, чтобы перевести несколько простых суждений в запись ТТЧ:

2+3 равняется 4: (SS0+SSS0)=SSSS0

2+2 не равняется 3: ~(SS0+SS0)=SSS0

Если 1 равняется 0, то 0 равняется 1: 

Первая из этих строчек — атом; остальные — составные формулы. (Внимание: «и» во фразе «1 и 1 будет 2» — всего лишь еще одно обозначение «плюса» и должно быть представлено «+» (и необходимыми скобками).

Свободные переменные и кванторы

Все правильно сформированные строчки, приведенные выше, обладают следующим свойством: их интерпретация — либо истинное, либо ложное высказывание. Однако существуют правильно сформированные формулы, не обладающие этим свойством, такие, например, как:

(b+S0)=SS0

Ее интерпретация — «b плюс 1 равняется 2». Поскольку b не определено, то невозможно сказать, истинно ли данное высказывание. Это напоминает высказывание с местоимением, взятое отдельно от контекста, такое, как «Она неуклюжа.» Это высказывание не истинно и не ложно — оно просто ждет, чтобы его поставили в контекст. Поскольку она не истинна и не ложна, подобная формула зовется открытой, а переменная b называется свободной переменной.

Одним из способов превратить открытую формулу в замкнутую формулу или высказывание является добавление квантора — фразы «существует число b такое, что…» или фразы «для всех b». В первом случае, у вас получается высказывание:

Существует число b такое, что b плюс 1 равняется 2.

Ясно, что это истинно. Во втором случае, вы получите:

Для всех чисел bb плюс 1 равняется 2.

Ясно, что это ложно. Теперь мы введем символы для обоих кванторов. Два высказывания, приведенные выше, в ТТЧ будут выглядеть как:

Eb:(b+S0)=SS0 ( E означает «существует»)

Ab:(b+S0)=SS0 ( A означает «все»)

Важно отметить, что речь идет уже не о неопределенных числах; первое высказывание — это утверждение существования, второе — утверждение общности. Их значение не изменится, даже если мы заменим b на c:

Ec:(c+S0)=SS0

Ac:(c+S0)=SS0

Переменная, управляемая квантором, называется квантифицированной переменной. Две следующие формулы иллюстрируют разницу между свободной и квантифицированной переменной.

(b*b)=SS0   (открытая)

~Eb:(b*b)=SS0   (замкнутая - высказывание ТТЧ)

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература