После того, как Гёдель изобрел эту кодирующую схему, ему пришлось разработать в деталях способ перевода парадокса Эпименида на формальный язык теории чисел. Конечный результат «пересадки» Эпименида на формальную почву звучит так: «Это суждение теории чисел не имеет доказательства» (вместо «Это суждение теории чисел ложно»). Эта формулировка может создать немалую путаницу. так как «доказательство» для многих является весьма приблизительным понятием. В действительности, труды Геделя были лишь частью долгих поисков, предпринятых математиками в надежде выяснить, что же такое доказательства. Необходимо помнить тот факт, что доказательства являются таковыми только
Заметим, между прочим, что Гёделево высказывание Г само по себе не является теоремой Гёделя, так же как высказывание Эпименида не является замечанием «Высказывание Эпименида — парадокс». Теперь мы можем установить, какой эффект произвело открытие Г. В то время как высказывание Эпименида создает парадокс, потому что оно не является ни истинным, ни ложным, Гёделево высказывание Г — истинно, хотя и не доказуемо в системе
Таким образом, теорема Гёделя произвела электризующий эффект на логиков, математиков и философов, заинтересованных в основах математики, поскольку она показала, что ни одна установленная система, какой бы сложной она не была, не может отразить всей сложности целых чисел: 0,1, 2, 3… Современный читатель, возможно, не окажется от этого в таком замешательстве, как читатели 1931 года, так как за прошедшее время наша культура впитала теорему Гёделя вместе с революционными идеями теории относительности и квантовой механики, и широкая публика получила доступ к этим концепциям, поражающим и дезориентирующим мышление даже в смягченном прослойкой переводов (а зачастую и затемненном этими переводами) виде. Сейчас идея «ограничивающих» результатов витает в воздухе; тогда, в 1931 году, она была как гром с ясного неба.
Чтобы полностью оценить теорему Гёделя, необходим определенный контекст. Я попытаюсь здесь дать обзор истории математической логики до 1931 года на нескольких страницах — невозможная задача! (Хорошее изложение истории этого предмета читатель может найти у Делонга, Нибоуна, или Нагеля и Ньюмена). Все началось с попытки механизировать мыслительный процесс логических рассуждений. Обратите внимание, что умение мыслить всегда рассматривалось как отличительная черта человека; на первый взгляд, желание механизировать самую человеческую черту кажется парадоксальным. Тем не менее, уже древние греки знали, что логическое мышление - структурный процесс, до некоторой степени управляемый определенными законами. Эти законы можно описать. Аристотель систематизировал силлогизмы, а Эвклид — геометрию; однако с тех пор прошло много веков до того, как в изучении логического мышления снова наступила эра прогресса.