Читаем ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда полностью

У всех этих парадоксов есть общий виновник: автореферентность, или «страннопетельность». Таким образом, если наша цель — избавиться от всех парадоксов, то почему бы нам не попытаться избавиться от автореферентности и тех условий, которые ее порождают? Это не так легко, как кажется, так как иногда бывает трудно найти, где именно происходит автореференция. Иногда она бывает распределена по Странной Петле в несколько ступеней, как в следующей расширенной версии парадокса Эпименида, напоминающей Эшеровские «Рисующие руки» —

Следующее высказывание ложно.

Предыдущее высказывание истинно.

Вместе эти высказывания производят такой же эффект, как первоначальный парадокс Эпименида; однако взятые по отдельности они безобидны и даже полезны Ни одно из них не может нести ответственности за Странную Петлю; виновато их объединение, то, как они указывают друг на друга. Точно так же каждый взятый по отдельности кусок «Подъема и спуска» совершенно правилен; невозможно лишь подобное соединение этих кусков в одно целое Видимо, существуют прямой и косвенный типы автореферентности; если мы считаем, что в автореферентности — корень зла, то мы должны найти способ избавиться сразу от обоих типов.

Изгнание Странных Петель

Рассел и Уайтхед считали именно таких труд «Основания математики» («ОМ») был титаническим усилием, направленным на изгнание Странных Петель из логики, теории множеств и теории чисел. В основе их системы лежала следующая идея. Множество «низшего» типа могло иметь своими элементами лишь «предметы», а не множества. На следующей ступени стояли множества, которые могли содержать предметы или множества первого типа. Вообще, любое данное множество могло содержать лишь множества низшего типа или предметы. Каждое множество принадлежало к определенному типу. Ясно, что никакое множество не могло содержать самого себя, так как оно оказалось бы тогда принадлежащим к более высокому типу, чем его собственный. В такой системе существуют лишь обыкновенные множества; более того, наш старый знакомец, множество R, теперь вообще не считается множеством, так как оно не принадлежит ни к одному конечному типу! По всей видимости, эта теория типов, которую мы также могли бы именовать «теорией уничтожения Странных Петель», преуспела в избавлении теории множеств от парадоксов — но только ценой введения искусственной иерархии и запрета на определенный тип множеств, такой, например, как множество всех «заурядных» множеств. Интуитивно это идет вразрез с нашим представлением о множествах.

Теория типов справилась с парадоксом Рассела, но ничего не предприняла в отношении парадоксов Эпименида или Греллинга. Для тех, чей интерес не шел дальше теории множеств, этого было достаточно; однако людям, заинтересованным в уничтожении парадоксов вообще, казалось необходимым создание подобной иерархии в языке, чтобы изгнать оттуда Странные Петли. На первой ступеньке такой иерархии стоял бы предметный язык, на котором возможно говорить лишь об определенной сфере предметов, но нельзя говорить о самом предметном языке, обсуждать его грамматику или какие-либо высказывания, для этого понадобился бы метаязык. (Опыт двух различных лингвистических уровней знаком любому, кто изучал иностранные языки.) В свою очередь, что­бы говорить о метаязыке, потребовался бы метаметаязык, и так далее. Каждое высказывание должно было принадлежать к определенному уровню иерархии. Таким образом, если бы мы не могли найти для данного высказывания места в иерархической структуре, мы должны были бы считать такое высказывание бессмысленным и как можно скорее выбросить его из головы.

Можно попытаться проанализировать таким образом двуступенчатую петлю Эпименида, приведенную выше. Первое высказывание, поскольку оно говорит о втором, должно быть уровнем выше последнего; однако точно такое же рассуждение применимо и ко второму высказыванию. Поскольку это невозможно, оба высказывания «бессмысленны». Точнее, они вообще не могут существовать в системе, основанной на строгой иерархии языков. Это предупреждает возникновение любых версий парадокса Эпименида или Греллинга (К какому уровню принадлежит «самоописывающий»?)

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже