Считается, что в клетке эти шаги осуществляются одновременно, это происходит координированно и требует присутствия трех основных энзимов эндонуклеазы ДНК, полимеразы ДНК и лигазы ДНК. Первый — «открывающий энзим», разделяющий цепочки, словно две части застежки «молнии». Потом вступают в действие два остальных энзима. Полимераза ДНК — это энзим копирования и передвижения; он медленно передвигается вдоль коротких цепочек ДНК, воспроизводя их дополнения методом, похожим на типогенетический. Для этого он пользуется материалом-сырцом — а именно, нуклеотидами, плавающими вокруг в цитоплазме. Поскольку это действие происходит «скачкообразно» (каждый скачок — это сначала растаскивание цепочек и затем их воспроизводство), возникают короткие «паузы», заполняемые при помощи лигазы ДНК. Этот процесс повторяется снова и снова. Этот отлаженный трехэнзимный аппарат передвигается аккуратно по всей длине молекулы ДНК, пока ее цепочки не окажутся полностью разделенными и скопированными. В результате получаются две копии первоначальной ДНК.
Обратите внимание, что для энзимного воздействия на цепочку ДНК совершенно неважно, что информация для этого процесса хранится в самой ДНК; энзимы просто выполняют свои задачи по передвижению символов, точно так же, как правила вывода в системе MIU. Им совершенно все равно то, что в какой-то момент они копируют те самые гены, в которых закодированы они сами. ДНК является для них эталоном, лишенным собственного значения и интереса.
Это можно сравнить с тем, как Квайново высказывание дает инструкции по самовоспроизводству. Там у нас тоже было что-то вроде «двойной цепочки» — две копии одной и той же информации, одна из которых действовала как команда, а другая — как эталон. Процесс в ДНК отдаленно напоминает эту ситуацию, поскольку три энзима (эндонуклеаза ДНК, полимераза ДНК и лигаза ДНК) закодированы только в одной из цепочек, которая, таким образом, действует как программа, в то время как другая цепочка — всего лишь эталон. Это сравнение приблизительно, поскольку в процессе копирования обе цепочки используются как эталоны. Все же эта аналогия очень интересна. Существует биохимическая аналогия дихотомии «использование — упоминание»: когда ДНК используется как последовательность символов для копирования, она похожа на
Цепочка ДНК имеет несколько уровней значения; это зависит от того, насколько велик кусок цепочки, который вы рассматриваете, и насколько мощен ваш «аппарат для расшифровки». На низшем уровне каждая цепочка ДНК содержит код эквивалентной цепочки РНК, и необходимой расшифровкой является
Однако в ДНК безусловно имеются и более высокие уровни значения, которые различить труднее. Например, у нас есть все основания полагать, что в ДНК человеческого существа закодированы такие его характеристики, как форма носа, музыкальные способности, быстрота рефлексов и так далее. Возможно ли, в принципе, научиться считывать такую информацию прямо с цепочек ДНК, минуя физический процесс
Существует еще одна (очень маловероятная) возможность может быть, нам удастся научиться читать фенотип с генотипа, минуя изоморфную симуляцию физического процесса эпигенезиса и пользуясь вместо этого более простым расшифровывающим механизмом. Это можно назвать «сокращенным псевдо-эпигенезисом». К сожалению, сокращенный или нет, псевдо-эпигенезис пока нам недоступен — за одним замечательным исключением. Тщательный анализ вида Felis Catus показал, что на самом деле возможно прочитать фенотип прямо с генотипа. Читатель, может быть, лучше поймет этот замечательный факт, рассмотрев следующий типичный кусок ДНК Felis Catus:
… САТСАТСАТСАТСАТСАТСАТСАТСАТСАТ …
Ниже показаны уровни считываемое ДНК вместе с названиями разных уровней расшифровки. ДНК может быть прочитана как последовательность:
(1) оснований (нуклеотидов) .... транскрипция
(2) аминокислот .... трансляция
(3) белков (первичная структура) .... генное выражение