i.
ii.
На первый взгляд, эти два постулата кажутся противоречащими друг другу. Если информация ограничена, то каким образом можно получить новую информацию? Но это противоречие кажущееся, потому что в постулатах говорится о «существенной» информации. Существенная информация – это та, которая позволяет определять поведение объекта в будущем. С получением новой информации часть старой становится «несущественной», то есть от нее совершенно перестает зависеть наше суждение о поведении объекта в будущем71
.В этих двух постулатах сформулирована суть квантовой теории72
. Давайте теперь поподробнее.Если бы мы с бесконечной точностью знали все физические величины, описывающие нечто, то располагали бы бесконечным объемом информации. Но это невозможно – предел устанавливает постоянная Планка ℏ73
. Именно в этом состоит ее физический смысл. Это предельная точность, с которой возможно определение физических величин.Это принципиальное обстоятельство Гейзенберг установил в 1927 году, вскоре после создания им теории74
. Он показал, что если точность имеющейся у нас информации о положении объекта равна ΔΔ
и гласит: «дельта
Непосредственным следствием этого является дискретность. Например, свет состоит из фотонов – «крупинок света», потому что существование более мелких порций энергии нарушило бы рассматриваемый принцип – величины электрического и магнитного полей (в случае света они играют роль
Принцип неопределенности не исключает возможности с высокой точностью измерить скорость частицы, а
Это следует из второго постулата, гласящего, что даже после получения максимального объема информации об объекте мы можем узнать нечто неожиданное (правда, потеряв при этом ранее полученную информацию). Прошлое не определяет будущее – мир вероятностен.
Поскольку измерение
Оно как раз означает, что «сначала
Да и сам принцип Гейзенберга, то есть уравнение на предыдущей странице, выводится за несколько шагов из уравнения на этой странице, в котором, следовательно, заключено все. Это уравнение представляет собой математическую формулировку обоих постулатов квантовой механики. Насколько мы это понимаем сейчас, два упомянутых постулата представляют физический смысл уравнения.
В дираковском варианте квантовой механики не нужны даже матрицы: в ней все выводится с помощью «некоммутативных переменных», то есть переменных, удовлетворяющих рассматриваемому уравнению. «Некоммутативность» означает невозможность безнаказанно изменять порядок переменных. Дирак называл