Выводы Стивенс подтвердил ее коллега, клеточный биолог Эдмунд Уилсон, который упростил терминологию и назвал мужскую хромосому Y, а женскую – X. В свете такой кодировки клетки мужчин предстали как XY, а женщин – как XX. Уилсон сформулировал обоснование этой системы. Яйцеклетка содержит единственную X-хромосому. Когда яйцеклетку оплодотворяет сперматозоид с Y-хромосомой, получается комбинация XY, определяющая
Система XY, открытая Стивенс и Уилсоном, наводила на важную мысль: если Y-хромосома содержит всю информацию, определяющую мужское начало, то она должна нести все гены, которые делают эмбрион мальчиком. Поначалу генетики рассчитывали найти на Y-хромосоме десятки таких генов: пол ведь предполагает точнейшую координацию множества анатомических, физиологических и психологических качеств, и сложно было бы вообразить, что за такое функциональное разнообразие отвечает один-единственный ген. При этом добросовестное изучение генетики неизбежно приводит к мысли, что Y-хромосома – очень негостеприимное место для генов. В отличие от всех остальных хромосом, у Y нет пары, то есть нет сестринской хромосомы, а потому каждый ее ген должен рассчитывать только на себя. Мутации в любой другой хромосоме можно «залечить», скопировав неповрежденный ген с другой хромосомы. Гены Y-хромосомы нельзя исправить или скопировать, пользуясь дублирующей хромосомой как матрицей, – иными словами, у них нет ни резервной копии, ни ориентира (эта хромосома предлагает только особую внутреннюю систему починки генов). Когда Y-хромосому атакуют мутации, она страдает от недостатка механизмов восстановления информации. Потому-то она буквально испещрена отметинами и рубцами истории – это самое уязвимое в человеческом геноме место.
Из-за непрерывной генетической бомбардировки человеческая Y-хромосома начала сбрасывать за борт информацию еще миллионы лет назад. Гены, по-настоящему важные для выживания, предпочли переместиться в другие части генома, предоставляющие более надежные условия для хранения. Гены с ограниченной ценностью устаревали, выводились из употребления или заменялись, в итоге сохранились лишь самые необходимые (некоторые из них дублировались на самой же Y, но даже такая стратегия не решила проблему). По мере потери информации Y-хромосома укорачивалась, лишаясь куска за куском в безрадостной череде мутаций и генных утрат. То, что Y выглядит самой маленькой из всех хромосом, не совпадение: она в значительной степени стала жертвой планового износа (хотя в 2014-м ученые обнаружили несколько чрезвычайно важных генов, вероятно, навсегда там закрепленных).
С точки зрения генетики сложился интересный парадокс. Пол, один из сложнейших человеческих признаков, судя по всему, не кодируется множеством генов. Мужское начало, скорее, определяется единственным геном с рискованным местоположением[960]
. Читатели-мужчины, обратите внимание: мы едва уцелели.В начале 1980-х молодой лондонский генетик по имени Питер Гудфеллоу начал охоту за «геном пола» на Y-хромосоме. Ярый футбольный болельщик – костлявый, подтянутый, не слишком опрятный, с безошибочно узнаваемым протяжным восточноанглийским произношением и нарядами в стиле «панк подружился с новой романтикой»[961]
, – Гудфеллоу намеревался применить метод генетического картирования, освоенный Ботштейном и Дэвисом, чтобы сузить область поиска до небольшого участка. Но как можно картировать «нормальный» ген, если нет вариаций связанного с ним фенотипа или ассоциированных с ним заболеваний? Хромосомное местоположение генов муковисцидоза и болезни Хантингтона вычислили по их связи с особыми указателями, или маячками, в геноме. В обоих случаях больной ребенок нес какую-то сигнальную вариацию ДНК, в то время как у его здоровых братьев и сестер ее не было. Но где Гудфеллоу мог найти человеческую семью с вариациями по полу – с каким-нибудь третьим полом, – которые передавались бы генетически и доставались лишь некоторым из детей?