Но если гены и там и там те же, то почему геном взрослой клетки так сложно убедить вернуться в эмбриональный период? И почему, как выяснили другие ученые, ядра от молодых животных охотнее, чем от старых, сбрасывают возраст? Здесь, как и в случае с Голодной зимой, что-то должно было постепенно отпечатываться на геноме взрослой клетки, должна была накапливаться какая-то нестираемая метка, мешающая геному отматывать онтогенетическое время вспять. Эта метка не могла втискиваться в сами гены или межгенную ДНК, она должна была наноситься поверх них – быть
Гёрдон представил себе эпигенетическую метку в абстрактном смысле, но физически такого отпечатка на геноме лягушки не наблюдал. В 1961 году Мэри Лайон, бывшая студентка Уоддингтона, нашла видимый пример эпигенетических изменений в клетке животного. Мэри, дочь госслужащего и школьной учительницы, начинала работать над диссертацией в Кембридже под руководством славного своей сварливостью Рона Фишера, но вскоре сбежала в Эдинбург, получила там степень, а позже возглавила исследовательский коллектив в тихой английской деревушке Харуэлл, километрах в тридцати от Оксфорда.
В Харуэлле Лайон изучала биологию хромосом, визуализируя их окрашиванием. К своему изумлению, она обнаружила, что все парные хромосомы, окрашенные специальным пигментом, выглядят одинаково – за исключением двух X-хромосом у самок. Одна из этих хромосом в каждой мышиной клетке всегда окрашивалась темнее. При этом гены темной хромосомы не были измененными: последовательностями ДНК две X-хромосомы не различались. Различались они, однако, своей
Но какова цель такой X-инактивации? Поскольку у женщин две X-хромосомы, а у мужчин всего одна, женские клетки вынуждены инактивировать какую-то из копий для уравнивания «дозы» X-генов. У этого случайного отключения есть важное биологическое следствие: женское тело представляет собой мозаику из двух типов клеток. Глушение (сайленсинг) одной из X-хромосом по большей части остается незаметным – если только какая-то из них (скажем, отцовская) не несет генный вариант, кодирующий видимый признак. В таком случае одна клетка будет экспрессировать этот вариант, а, скажем, соседняя с ней клетка не будет – получится мозаичный эффект. У кошек, например, один из генов цвета шерсти обосновался на X-хромосоме. В результате случайной X-инактивации у самок некоторые клетки будут производить один пигмент, а их соседки – другой[1044]
. Именно в глубинах эпигенетики, а не генетики кроется разгадка феномена кошачьей «черепаховости». (Если бы люди несли ген цвета кожи на X-хромосоме, то ребенок женского пола у светлокоже-темнокожей пары рождался бы в темных и белых пятнах.)Как клетке удается заглушить целую хромосому? Здесь ведь не просто активируется-инактивируется ген-другой в зависимости от сигналов среды, здесь целая хромосома со всеми ее генами выключается на всю клеточную жизнь. Самая логичная догадка, высказанная в 1970-х, такова: клетка каким-то образом ставит постоянный химический штамп – молекулярный «кирпич» – на ДНК этой хромосомы. А раз сами гены не затрагиваются, такая метка должна ставиться поверх них, то есть
В конце 1970-х ученые, работавшие над вопросом сайленсинга генов, обнаружили, что присоединение маленькой молекулы – метильной группы – к некоторым участкам ДНК коррелирует с выключением соответствующего гена. Как выяснили позже, в случае инактивированной X-хромосомы один из главных зачинщиков этого процесса – молекула РНК под названием
Метильные метки не были единственными подвесками, декорирующими ожерелье ДНК. В 1996-м Дэвид Эллис, биохимик из Рокфеллеровского университета, обнаружил еще одну систему нанесения долговременных меток на геном. Вместо того чтобы «проштамповывать» саму ДНК, эта вторая система метила белки под названием