Однажды ответ вышел из тумана. Буквально. Как-то утром Бреннер и Жакоб сидели на пляже. Бреннер размышлял над своими лекциями по основам биохимии и вдруг осознал до смешного простой факт: в их растворах могло не хватать необходимого химического фактора, который отвечал за целостность рибосом внутри клеток. Но что это за фактор? Это явно что-то маленькое, тривиальное и вездесущее – крохотная капля молекулярного клея. Бреннер внезапно вскочил. Его крик пронзил утренний туман: «
И это действительно был магний. Он оказался критически важным: в растворе с добавлением его ионов рибосома оставалась целой, и Бреннеру с Жакобом наконец удалось выделить из бактериальных клеток мизерное количество молекулы-посредника[545]
. Как и ожидалось, это была РНК[546] – но РНК особого типа[547]. Она производилась всякий раз при экспрессии гена и, подобно ДНК, строилась путем сборки в цепочку нуклеотидов с одним из четырех оснований – А, Г, Ц и У (вместо Т, характерного для ДНК). Что примечательно, Бреннер и Жакоб позже обнаружили, что матричная РНК – этоВсе это напоминало процесс перевода книг в библиотеке редких изданий. Оригинальный источник информации (ген) постоянно находится где-то в недрах хранилища. Когда от клетки поступает «запрос на перевод», из ядерного хранилища наружу посылается фотокопия оригинала. Это факсимиле гена (РНК) – рабочий экземпляр для
Но транскрипция решала задачу синтеза белка только наполовину. Оставалась другая: перекодирование информации из РНК-послания в белок. Чтобы создать РНК-копию гена, клетка использует довольно простое правило переноса: каждый А, Ц, Т и Г в гене соответствует А, Ц, У и Г в матричной РНК (например, АЦТ ЦЦТ ГГГ → АЦУ ЦЦУ ГГГ). Единственное отличие РНК-копии от оригинального гена – замена тимина на урацил (Т → У). Но как же генетическая информация после перевода в РНК перекодируется в белок?
Уотсон и Крик сразу поняли, что ни одно основание по отдельности – А, Ц, Т или Г – не может нести достаточно генетической информации для построения какой бы то ни было части белка. Ходовых аминокислот в общей сложности 20, а четыре буквы поодиночке никак не могут определять 20 альтернативных вариантов. Секрет, видимо, крылся в комбинациях оснований. «Похоже, определенная
Эту мысль можно проиллюстрировать на примере естественного языка. Буквы К, Т и О сами по себе несут мало смысла, но их можно скомбинировать несколькими способами и получить «послания» с заметно разными значениями. Здесь смысл тоже определяется последовательностью: скажем, слова
Представим в виде схемы:
В серии остроумных экспериментов Крик и Бреннер выяснили, что генетический код наверняка «триплетен»:
Но какой триплет какую аминокислоту кодирует? К 1961 году за разгадку генетического кода боролись уже несколько лабораторий из разных стран. В Национальном институте здоровья в Бетесде Маршалл Ниренберг, Генрих Маттей и Филип Ледер пытались взломать код с помощью биохимического подхода. Химик индийского происхождения Хар Корана получил необходимые для этого реагенты. А в Нью-Йорке биохимик-испанец Северо Очоа параллельно начал сопоставлять триплетные кодоны с аминокислотами.