Выяснением структуры ДНК Уотсоном, Криком, Уилкинсом и Франклин завершилось одно долгое путешествие генов, но оно открыло пути к другим исследовательским целям, к новым открытиям. «Когда стало известно, что ДНК имеет крайне упорядоченное, регулярное строение, – писал Уотсон в 1954 году, – пришло время раскрыть другую тайну[525]
: как уйма генетической информации, определяющей все характеристики живого организма, может храниться в такой регулярной структуре?» На смену старым вопросам пришли новые. Какие свойства двойной спирали позволяют ей хранить код жизни? Как этот код переписывается и переводится в реальные структуры и функции организма? Почему, если уж на то пошло, спиралей две, а не одна, не три или не четыре? Почему они комплементарны друг другу: А сопоставляется с Т, а Г – с Ц, как молекулярные инь и ян? Почему из всех молекулярных структур именно эта была выбрана главным хранилищем всей биологической информации? «Дело не в том, что [ДНК] выглядит так красиво, – заметил позже Крик. – Важен заключенный в ней замысел того, как она работает».В образах кристаллизуются идеи. В образе двуспиральной молекулы, хранящей инструкции по изготовлению, эксплуатации, ремонту и воспроизводству человека, кристаллизовались оптимизм и чаяния 1950-х. Казалось, в этой молекуле кроются все задатки человеческого совершенства и уязвимости, и как только мы научимся управлять этим химическим соединением, мы перепишем нашу природу. Излечим болезни, изменим судьбы, перестроим будущее.
Модель ДНК Уотсона и Крика ознаменовала смену одной концепции гена – как таинственного гонца, передающего сообщения от поколения к поколению, – на другую: гена как химического вещества, молекулы, способной кодировать, хранить и передавать информацию от организма к организму. Если ключевым словом генетики начала XX века было
«Неуловимый окаянный Пимпернель!»[526]
Молекула белка – это изобретенный природой инструмент, в котором простота строения служит великой изощренности и гибкости; молекулярную биологию невозможно увидеть под правильным углом, если не уяснить это своеобразное сочетание добродетелей.
Слово «код», как я уже писал, происходит от «кодекса» – куска древесины, на котором выцарапывали древние манускрипты. Впечатляет, что само это слово произошло от наименования материала для записи правил: форма стала функцией. Уотсон и Крик догадались, что в случае ДНК форма молекулы тоже должна быть глубинно связана с функцией. Генетический код должен быть органично вписан в материал ДНК – так же проникающе, как царапины внедрены в древесину.
Но что такое генетический код? Каким образом четыре основания в цепочке ДНК – А, Ц, Г, Т (или А, Ц, Г, У в РНК) – определяют структуру волос, цвет глаз у человека, тип оболочки у бактерии (и если уж на то пошло, семейную склонность к психической болезни или к смертельным кровотечениям)? Как менделевская абстрактная «единица наследственности» раскрывается в виде конкретного физического признака?
В 1941-м, за три года до знакового эксперимента Эвери[528]
, двое ученых, Джордж Бидл и Эдвард Лоури Тейтем, работая в подвале Стэнфордского университета, открыли недостающее звено между генами и физическими признаками. Бидл – или Битс[529], как его любили звать коллеги, – был студентом Томаса Моргана в Калтехе[530]. Красноглазые мушки и их белоглазые мутанты заставили Бидла задуматься. Битс понял, что «ген красноты» – это единица наследственной информации, переходящая от родителя к потомку в неделимой форме – форме гена – в составе хромосомной ДНК. Физическое свойство «краснота» – следствие накопления в глазах химического пигмента. Но как частица наследственности превращается в пигмент глаза? Какова связь между «геном красноты» и самой краснотой – между информацией и ее физическим, анатомическим выражением?