В этом плане, как и во многих других, нам очень повезло в отличие от мушек дрозофил. Механизм подавления транспозонов у нас один и тот же. Согласно последней теории этот механизм состоит в метилировании цитозина. Цитозин, как вы помните, это «буква» С в генетическом алфавите. Метилирование, или, другими словами, добавление к цитозину метильной группы из атома углерода и трех атомов водорода, препятствует считыванию информации с генов. Большинство генов в геноме, а также их промоторы (структуры в начале генов, запускающих их считывание) находятся в заблокированном состоянии. Общепризнано, что метилирование в клетках используется для отключения генов, которые не нужны в данной ткани. Вот почему мозг отличается от печени, а печень от кожи и т.д. Но недавно получила подтверждение альтернативная теория назначения метилирования ДНК, согласно которой этот процесс не столь важен для дифференциации тканей, как для подавления транспозонов и других внутригеномных паразитов. Действительно, ДНК ретротранспозонов Alu и LINE-i наиболее метилирована в геноме. На ранних стадиях развития эмбриона в клетках почти нет метилированной ДНК и все гены находятся в рабочем состоянии. В это время особые белки проходят с инспекцией вдоль всех хромосом, распознают и метилируют гены вирусов и транспозонов. Первое, что происходит в раковых клетках, — это демитилирование ДНК. В результате все генетические паразиты оказываются на свободе и быстро увеличиваются в числе. Именно в результате их активности в раковых клетках стремительно накапливаются мутации, до неузнаваемости изменяя клетки. Метилирование — это первый рубеж, который выстраивает клетка против проникших в нее генетических паразитов (Yoder J. A.
Генетические паразиты чрезвычайно разнообразны по размерам и поведению. LINE-i состоит примерно из 1 400 «букв», Alu содержит как минимум 180 «букв», но есть еще более мелкие элементы, способные к копированию себя в длинные повторяющиеся последовательности. Их даже трудно назвать паразитами. Они не способны прыгать по геному и разрушать гены, но они существуют только потому, что способны обманным способом копировать себя. Именно эти короткие чередующиеся последовательности ДНК нашли применение в криминалистике. Познакомьтесь с «гипервариабельным минисателлитом». Эти последовательности не обошли своим вниманием ни одной хромосомы и образовали более 1 ООО колоний по всему геному. И во всех случаях данный участок хромосомы представляет собой множество повторов одного «слова» длиною примерно в 20 «букв». Само «слово» может меняться в разных местах хромосомы и у разных людей, но чаще всего оно представлено такой последовательностью нуклеотидов: GGGCAGGAXG (где X— любой нуклеотид). Интересно, что эта последовательность очень напоминает аналогичный генетический элемент в геномах микроорганизмов, где он служит точкой инициации процесса обмена генами между бактериями одного вида. Есть данные, что и в геноме человека эти последовательности вовлечены в обмен генами между хромосомами. Для соответствующих белков эта последовательность выступает в роли транспаранта «ЗАМЕНИ МЕНЯ».
Посмотрите, примерно так выглядит минисателлит:
GGGCAGGATG-GGGCAGGATG-GGGCAGGATG-
GGGCAGGATG-GGGCAGGATG-GGGCAGGATG-
GGGCAGGATG-GGGCAGGATG-GGGCAGGATG-
GGGCAGGATG
В данном случае у нас 10 повторов одного «слова». В других местах на хромосомах (а таких мест тысячи) может быть от 5 до 50 повторов. Следуя инструкциям, клетка приступает к обмену между аналогичными последовательностями минисателлитов на одной или разных хромосомах.
При этом обмен происходит случайным образом, в результате чего в одном месте количество повторов уменьшается, а в другом — увеличивается. Такие обмены случаются достаточно часто, чтобы гарантировать, что у каждого человека образуется совершенно уникальное чередование минисателлитов в хромосомах. В то же время этот процесс не настолько быстрый, чтобы нельзя было заметить явное сходство между родителями и детьми. Сравнение повторов в тысячах серий минисателлитов позволяет достоверно установить родственные связи и идентифицировать человека по биологическим образцам.