Читаем Гены и развитие организма полностью

Опыты по узнаванию между клетками были начаты Гольтфретером уже более 40 лет назад. Он диссоциировал клетки гаструлы амфибий, т. е. отделял их друг от друга. Для этого достаточно убрать из солевой среды кальций или, что еще эффективнее, добавить в среду вещество, связывающее кальций. Если к диссоциированным и перемещенным клеткам снова добавить кальций, то клетки всех трех зародышевых листков слипаются в бесформенный комок, состоящий из беспорядочной смеси всех трех сортов клеток. Однако через сутки клетки оказываются «рассортированными», так что эктодермальные клетки лежат, как им и полагается, снаружи, энтодермальные — внутри, а клетки мезодермы — между ними. У морского ежа после такой диссоциации и реассоциации развивается нормальный зародыш. Нам пока важно отметить, что если беспорядочно расположенные клетки смогли собраться вместе и правильно расположиться, то, значит, они действительно как-то узнают друг друга и предпочитают себе подобных.

Стейнберг сделал следующий шаг: он исследовал образование контактов между шестью типами эмбриональных клеток цыпленка, которые теоретически могут образовывать 15 различных вариантов смешанных пар. Такие пары действительно образуются, но при свободном выборе (в смеси) одни пары возникают чаще (или они прочнее), чем другие, и можно установить постепенный ряд степеней сродства (аффинитета) между клетками. Эта работа придает проблеме «узнавания» и связывания количественный подход: нельзя утверждать, что клетки одного типа узнают или не узнают другие, а можно лишь говорить, что одни пары клеток связываются прочнее, чем другие.

Сказанное здесь не следует понимать слишком упрощенно. Межклеточные контакты еще далеко не ясное явление: в них, очевидно, участвуют не только поверхности обеих клеток и ионы кальция, но и, возможно, специальные белки, так называемые факторы адгезии.

Последний пример подобного узнавания, который мы рассмотрим, был исследован на диссоциированных клетках сетчатки и связан с именами Москоны и затем Барберы и Готлиба. Сначала Москона показал, что между клетками сетчатки существует избирательное узнавание и слипание. Барбера и потом Готлиб изучали сцепление между диссоциированными клетками сетчатки и зрительного отдела мозга — тектума. На достаточно поздних стадиях развития от сетчатки к тектуму подрастают аксоны нервных клеток сетчатки. Важно, что определенные районы сетчатки посылают аксоны не случайно, а к определенным районам тектума. Диссоциированные клетки ранней сетчатки можно пометить радиоактивным фосфором и измерять их прилипание к кусочкам тектума количественно, по радиоактивности. Оказалось, что клетки, полученные из вентральной (нижней) половины сетчатки, значительно сильнее прилипают к дорсальной (верхней) половине тектума и гораздо слабее — к вентральной его части. Клетки дорсальной половины сетчатки ведут себя как раз наоборот. Удивительно, что и при нормальном развитии нервных связей глаза и мозга точно так же ведут себя аксоны: из дорсальной половины сетчатки они тянутся в вентральную половину тектума, а из вентральной части сетчатки — в дорсальные районы тектума.

Таким образом, от проблемы «узнавания» мы перешли к проблеме «сортинга», т. е. способности клеток не только узнать друг друга, но и разобраться по сортам, как это было обнаружено еще Гольтфретером на гаструле амфибий. А от проблемы «сортинга» мы естественным образом переходим к проблеме морфогенеза. Узнавание клетками друг друга оказывается в то же время и механизмом создания в развитии их правильного расположения.

Каковы же механизмы «сортинга»? Предполагается, что эмбриональные клетки (а у низших многоклеточных — губок и кишечнополостных — и взрослые клетки) вступают друг с другом не в постоянные, а в динамические контакты, т. е., двигаясь друг относительно друга, образуют то менее, то более прочные связи, зависящие от обоих типов клеток, степени их аффинитета, или, что то же самое, от свойств их поверхности. Чем прочнее такой контакт, тем дольше он удерживается и реже нарушается. Клетки двигаются друг относительно друга до тех пор, пока не возникнет наиболее стабильная система, обладающая, если говорить языком физики, минимумом свободной энергии.

Кажется вероятным, что и в нормальном эмбриональном развитии клетки контактируют друг с другом так, что всегда образуют наиболее стабильные контакты. Иначе бы ход эмбриогенеза постоянно нарушался из-за того, что клетки уползали бы в другие места, завязывали бы «неправильные», но более прочные контакты и т. д. Перемещения клеточных пластов, собирание клеток в массы, контакты одних типов клеток с другими во многом, хотя и не целиком происходят благодаря этим силам сродства и взаимного «узнавания» — притяжению и иногда отталкиванию (его называют отрицательным аффинитетом). Неудивительно поэтому, что и искусственный «сортинг» беспорядочно расположенных клеток создает большее или меньшее подобие нормальной организации ранних, просто устроенных стадий развития.

Перейти на страницу:

Все книги серии От молекулы до организма

Темперамент. Характер. Личность
Темперамент. Характер. Личность

Книга члена-корреспондента АН СССР, доктора медицинских наук П. В. Симонова и кандидата искусствоведения П. М. Ершова посвящена популярному изложению естественнонаучных основ индивидуальных особенностей человека в свете учения И. П. Павлова о высшей нервной деятельности и достижений современной психофизиологии. ряде глав использовано творческое наследие К. С. Станиславского, касающееся воссоздания характеров действующих лиц и принципов актерского перевоплощения в индивидуальность изображаемого персонажа.Книга представляет интерес для самого широкого круга читателей — физиологов, психологов, педагогов, работников искусства, для каждого, кто в своей практической деятельности связан с вопросами воспитания, подбора, профессиональной ориентации людей.

Павел Васильевич Симонов , П. В. Симонов , Петр Михайлович Ершов , П. М. Ершов

Психология и психотерапия / Психология / Образование и наука

Похожие книги

Мозг рассказывает. Что делает нас людьми
Мозг рассказывает. Что делает нас людьми

Непостижимые загадки (как человек может хотеть ампутировать себе руку? почему рисунки аутичного ребенка превосходят по своему мастерству рисунки Леонардо? что такое чувство прекрасного? откуда берется в нас сострадание? как может человечество передавать культуру от поколения к поколению? что породило речь? где живет самосознание?) находят свое объяснение на уровне нейронов мозга — благодаря простым и гениальным экспериментам B. C. Рамачандрана. Он великий ученый современности, но у него еще и искрометное чувство юмора — и вот вам, пожалуйста, блестящее повествование о странном человеческом поведении и работе мозга.Самые последние достижения науки о мозге. Где в мозге кроется то, что делает человека человеком? B. C. Рамачандран назван одним из ста самых выдающихся людей XX века.

Вилейанур С. Рамачандран , Вилейанур Субраманиан Рамачандран

Биология, биофизика, биохимия / Психология и психотерапия