Читаем Гены и развитие организма полностью

У амфибий на стадии бластулы, состоящей из нескольких тысяч клеток, будущая мезодерма составляет менее одной трети всех клеток. Ho по мере развития мезодермальные производные — все мышцы, почти весь скелет, система кровообращения, почки и др. — занимают не менее 80 % всей массы головастика.

Особенно нагляден неодинаковый темп деления клеток в морфогенезе многих беспозвоночных. У видов с мозаичным развитием уже на стадии 30–60 клеток зачатки всех основных органов определены и представлены очень немногими клетками (иногда всего двумя). Далее деления клеток в каждом зачатке строго программируются. Так, например, ранний зародыш асцидий содержит 52 клетки эктодермы, 10 клеток энтодермы и всего 8 клеток мезодермы. В течение последующего развития число клеток эктодермы возрастает в 16 раз, энтодермы — в 20, а мезодермы — в 50. Благодаря программированности делений число клеток у некоторых взрослых беспозвоночных (например, у нематод) строго постоянно и каждый орган представлен определенным числом клеток. Далеко не всегда местоположение органа и место, где делятся составляющие его клетки, совпадают. Часто митозы происходят только в особой зоне размножения и оттуда клетки мигрируют к месту своей дифференцировки. Примеры такого рода мы уже видели при рассмотрении системы стволовых клеток. То же происходит, например, и при развитии головного мозга.

Программа клеточных делений не всегда очень строга и предопределяет точное их число. Чаще, вероятно, деления происходят до тех пор, пока количество клеток или размер органа не достигнет определенной величины. Речь идет, таким образом, о двух принципиально различных механизмах регуляции клеточных делений.

В одном случае (как в яйцах с мозаичным развитием) он, по-видимому, заключен в самой делящейся клетке, которая должна «уметь отсчитывать» свои деления. В другом же случае должна существовать некоторая «петля обратной связи», когда масса органа или число клеток, достигая некоторой величины, начинает тормозить дальнейшие деления.

Оказалось, что число делений в нормальных клетках, не трансформированных в злокачественные, вообще не беспредельно и обычно не превышает 50–60 (большинство клеток делится меньше, так как если бы яйцо равномерно разделилось 60 раз, то число клеток в организме (260) оказалось бы в тысячи раз выше, чем в действительности). Однако ни механизм такого предела числа клеточных делений (называемого по имени открывшего его ученого предел Хайфлика), ни его биологический смысл пока непонятен.

Что же является «датчиком» в системе регуляции — размер органа или число клеток? Однозначный ответ на этот вопрос дают опыты с получением животных с измененной плоидностью — гаплоидные, триплоидные или тетраплоидные. Их клетки соответственно в 2 раза меньше или в 1,5 или 2 раза больше нормальных диплоидных. Тем не менее и размер самих животных, и размер их органов, как правило, нормальные, т. е. они содержат больше или меньше клеток, чем в норме. Регулируемой величиной, следовательно, является не количество клеток, а масса органа или всего организма.

Иначе обстоит дело у растений. Клетки тетраплоидных растений, как и у животных, соответственно больше диплоидных. Но и размеры частей тетраплоидных растений — листьев, цветков, семян — часто оказываются больше обычных почти в 2 раза. Похоже, что у растений «датчиком» при определении числа клеточных делений является не размер органа, а само число клеток.

Механизмы, регулирующие клеточные деления — пролиферацию клеток, изучаются очень интенсивно и с разных сторон. Одним из стимулов такой активности ученых является то, что отличия раковых клеток от нормальных во многом и состоят в нарушении регуляции клеточных делений, в выходе клеток из-под такой регуляции.

Примером одного из механизмов регуляции клеточных делений может служить поведение клеток, посеянных на дно флакона с питательной средой, — клеточной культуры. Их деления в хороших условиях происходят до тех пор, пока они не покроют все дно и клетки не коснутся друг друга. Далее наступает так называемое контактное торможение, или торможение, зависимое от плотности клеток. Его можно нарушить, как это делал Ю. М. Васильев, расчистив от клеток небольшое окошко на поверхности стекла. В это окошко со всех сторон устремляются клетки, вокруг него проходит волна клеточных делений. Можно думать, что и в организме контакты с соседними клетками являются механизмом, сдерживающим клеточные деления.

У опухолевых клеток эта регуляция нарушается — они не подчиняются контактному торможению, а продолжают делиться, громоздясь друг на друга. Аналогично, увы, они ведут себя и в организме.

Перейти на страницу:

Все книги серии От молекулы до организма

Темперамент. Характер. Личность
Темперамент. Характер. Личность

Книга члена-корреспондента АН СССР, доктора медицинских наук П. В. Симонова и кандидата искусствоведения П. М. Ершова посвящена популярному изложению естественнонаучных основ индивидуальных особенностей человека в свете учения И. П. Павлова о высшей нервной деятельности и достижений современной психофизиологии. ряде глав использовано творческое наследие К. С. Станиславского, касающееся воссоздания характеров действующих лиц и принципов актерского перевоплощения в индивидуальность изображаемого персонажа.Книга представляет интерес для самого широкого круга читателей — физиологов, психологов, педагогов, работников искусства, для каждого, кто в своей практической деятельности связан с вопросами воспитания, подбора, профессиональной ориентации людей.

Павел Васильевич Симонов , П. В. Симонов , Петр Михайлович Ершов , П. М. Ершов

Психология и психотерапия / Психология / Образование и наука

Похожие книги

Мозг рассказывает. Что делает нас людьми
Мозг рассказывает. Что делает нас людьми

Непостижимые загадки (как человек может хотеть ампутировать себе руку? почему рисунки аутичного ребенка превосходят по своему мастерству рисунки Леонардо? что такое чувство прекрасного? откуда берется в нас сострадание? как может человечество передавать культуру от поколения к поколению? что породило речь? где живет самосознание?) находят свое объяснение на уровне нейронов мозга — благодаря простым и гениальным экспериментам B. C. Рамачандрана. Он великий ученый современности, но у него еще и искрометное чувство юмора — и вот вам, пожалуйста, блестящее повествование о странном человеческом поведении и работе мозга.Самые последние достижения науки о мозге. Где в мозге кроется то, что делает человека человеком? B. C. Рамачандран назван одним из ста самых выдающихся людей XX века.

Вилейанур С. Рамачандран , Вилейанур Субраманиан Рамачандран

Биология, биофизика, биохимия / Психология и психотерапия