«Начертательная геометрия, — писал он, — является звеном, соединяющим математические науки с техническими. Возникшие за последние годы новые технические науки — аэросъемка, киноперспектива, стереофотография и т. п, — выводят целый ряд новых предложений на основе графического решения поставленных задач».
По учебнику Рынина изучал начертательную геометрию и автор этих строк, как и другие курсанты Высшего военно-морского инженерного училища, любовно называвшие «брошюркой Рынина» этот капитальный труд. И надо сказать, автор этого учебника подает предмет так, что им невозможно не увлечься.
Перу Николая Алексеевича принадлежит и «Сборник задач по начертательной геометрии» (сотни и сотни задач из разных областей приложения этой науки!), и «Материалы по истории начертательной геометрии», где уделено достойное внимание Гаспару Монжу, его предшественникам и последователям, впервые показано развитие созданной Монжем науки в нашей стране.
Много есть формулировок понятия «наука», разные ее стороны и свойства они отражают. Но, пожалуй, самая красивая из ее черт точно подмечена М. Горьким. Он назвал науку областью наибольшего бескорыстия.
Этим свойством науки и объясняется та потребность общения, которую мы видим в ученых с давних времен, их неизменное стремление поделиться с коллегами всем, что удалось найти, разработать, доказать… Этим, конечно же, объясняется быстрый прогресс наук в условиях общения ученых разных стран и, в частности, тот плодотворный научный обмен в математике и механике между учеными Франции и нашей страны, начиная со времен Монжа, Лагранжа и Лапласа, чьи идеи успешно разрабатывали и развивали представители русской школы математиков и механиков. Они показали себя достойными принять эстафету от великих французских предшественников.
И первым среди замечательных продолжателей их дела надо назвать имя академика Пафнутия Львовича Чебышева, основателя Петербургской школы математиков, снискавшей всемирную известность. Его вклад в теорию чисел (тема докторской диссертации) и в теорию вероятностей очень велик. «В значительной мере благодаря трудам школы Чебышева, — пишет Д. Я. Стройк, — теория вероятностей, развиваясь в связи с запросами естествознания и прикладных наук, могла достичь положения ведущей математической дисциплины».
Как видим, и гениальный Лаплас в своей «Аналитической теории вероятностей» не все раскрыл и не до всего докопался.Чебышев представлял собой исключительный тип ученого-практика, наделенного силой обобщения, свойственной обычно мыслителям-математикам. Практические запросы он превращал в новые математические теории, которые не оставались «в области чистой мысли», а воплощались в реальную действительность, в разного рода машины и механизмы. «Математика, — говорил он, — пережила два периода: в первый период задачи (делийская, об удвоении куба и др.) ставили боги; в эпоху Паскаля, Ферма и др. их давали полубоги; теперь задачи ставит масса и ее нужды».
Чебышев часто ездил за границу, особенно во Францию, где среди ученых у него было много друзей. В заграничных командировках он непременно посещал металлургические и другие заводы, различные фабрики, лаборатории, музеи машин, встречался с единомышленниками в науке. Любопытно распределение по странам ста шести сохранившихся писем Чебышеву. Из Франции он получил шестьдесят, из России и Италии по двенадцать, Бельгии восемь, Англии четыре, Германии и Швеции по три, Америки два, Швейцарии и Португалии по одному письму. Сам он писал редко и, хотя в движениях был несколько скован (хромал из-за того, что одна нога у него была немного сведена с детства), предпочитал переписке личные товарищеские беседы.
Чаще всего целью поездки было чтение докладов в Парижском математическом обществе и на заседаниях Французской ассоциации содействия преуспеванию наук (в Лионе, Клермон-Ферране, Париже). Будучи с 1860 года членом-корреспондентом Парижской академии наук, а с 1874 — одним из восьми ее иностранных сочленов (наиболее выдающихся ученых мира), он очень много сделал для преуспевания как наук, так и научных связей наших стран. Чебышев был также членом Лондонского королевского общества, членом-корреспондентом Берлинской академии наук, почетным членом многих научных обществ и университетов.
Интерес к докладам Чебышева всегда был очень велик, как и круг вопросов, которые он поднимал. Так, на Парижском конгрессе он председательствовал в двух секциях — математической и механической. На заседаниях он сделал несколько сообщений, касающихся теории вероятностей, теории чисел, практической механики и «нового приложения математического анализа к предмету; который казался недоступным для строго научных исследований, а именно к кройке платья… Когда в числе назначенных к чтению сообщений, — писал журнал «Всемирная иллюстрация», — было объявлено, что наш ученый будет делать сообщения о приложении математики к кройке платья, то заявление это привлекло, по словам французских газет, небывалое множество публики, заинтересованной оригинальностью предмета».