Читаем Геометрия: Планиметрия в тезисах и решениях. 9 класс полностью

Каковы бы ни были три точки, расстояние между любыми двумя из этих точек не больше суммы расстояний от них до третьей точки. Отсюда следует, что в любом треугольнике каждая сторона меньше суммы двух других сторон (рис. 89):

АС < АВ + ВС.

Рис. 89.


Связь между величинами сторон и величинами углов в треугольнике.

В треугольнике против большего угла лежит большая сторона, против большей стороны лежит больший угол (рис. 90).

(BC < AB < AC) ? (?А < ?С < ?В).

Рис. 90.

6. Основные геометрические места точек на плоскости

Геометрическим местом точек плоскости, равноудалённых от сторон угла, будет биссектриса данного угла (рис. 91).

Рис. 91.


АК = AT, где А – любая точка на биссектрисе.

Геометрическим местом точек, равноудалённых от двух данных точек, будет прямая, перпендикулярная к отрезку, соединяющему эти точки, и проходящая через его середину (рис. 92).

Рис. 92.


MA = MB, где М – произвольная точка на серединном перпендикуляре отрезка АВ.

Геометрическим местом точек плоскости, равноудалённых от заданной точки, будет окружность с центром в этой точке (рис. 93).

Рис. 93.


Точка О равноудалена от точек окружности.


Местоположение центра окружности, описанной около треугольника.

Центр окружности, описанной около треугольника, является точкой пересечения перпендикуляров к сторонам треугольника, проведённых через середины этих сторон (рис. 94).

Рис. 94.


А, В, С – вершины треугольника, лежащие на окружности.

АМ = МВ и АК = КС.

Точки М и К – основания перпендикуляров к сторонам АВ и АС соответственно.


Местоположение центра окружности, вписанной в треугольник.

Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис (рис. 95).

Рис. 95.


В ?ABC отрезки AT и СК являются биссектрисами.

7. Теоремы о четырёхугольниках

Свойства параллелограмма.

У параллелограмма противолежащие стороны равны. У параллелограмма противолежащие углы равны.

Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам (рис. 96).

Рис. 96.


АВ = CD, ВС = AD, ?BAD = ?BCD, ?АВС = ?ADC, AO = OC, BO = OD.


Признаки параллелограмма.

Если у четырёхугольника две стороны параллельны и равны, то он является параллелограммом (рис. 97).

Рис. 97.


ВС||AD, ВС = AD ? ABCD – параллелограмм.


Если диагонали четырёхугольника пересекаются и точкой пересечения делятся пополам, то этот четырёхугольник – параллелограмм (рис. 98).

Рис. 98.


АО = ОС, ВО = OD ? ABCD – параллелограмм.


Свойства прямоугольника.

Для прямоугольника характерны все свойства параллелограмма (у прямоугольника противолежащие стороны равны; у прямоугольника противолежащие углы равны (90°); диагонали прямоугольника пересекаются и точкой пересечения делятся пополам).

Диагонали прямоугольника равны (рис. 99):

АС = BD.

Рис. 99.


Признак прямоугольника.

Если у параллелограмма все углы равны, то он является прямоугольником.


Свойства ромба.

Для ромба характерны все свойства параллелограмма (у ромба противолежащие стороны равны – вообще все стороны по определению равны; у ромба противолежащие углы равны; диагонали ромба пересекаются и точкой пересечения делятся пополам).

Диагонали ромба пересекаются под прямым углом.

Диагонали ромба являются биссектрисами его углов (рис. 100).

Рис. 100.


AC ? BD, ?ABD = ?DВС = ?CDB = ?BDA, ?ВАС = ?CAD = ?ВСА = ?DCA.


Признак ромба.

Если у параллелограмма диагонали перпендикулярны, то он является ромбом.


Свойства квадрата.

Квадрат обладает свойствами прямоугольника и ромба.


Признак квадрата.

Если диагонали прямоугольника пересекаются под прямым углом, то он – квадрат.


Свойство средней линии трапеции.

Средняя линия трапеции параллельна основаниям и равна их полусумме (рис. 101).

Рис. 101.


Критерии вписанного и описанного четырехугольников.

Если около четырёхугольника можно описать окружность, то суммы его противоположных углов равны по 180° (рис. 102).

?А + ?С = ?В + ?D = 180°.

Рис. 102.


Если в четырёхугольник можно вписать окружность, то суммы его противоположных сторон равны (рис. 103).

AB + CD = AD + BC.

Рис. 103.

8. Теоремы об окружностях

Свойство хорд и секущих.

Если хорды АВ и CD окружности пересекаются в точке S, то AS ? BS = CS ? DS (рис. 104).

Рис. 104.


Если из точки S к окружности проведены две секущие, пересекающие окружность в точках А, В и С, D соответственно, то AS ? BS = CS ? DS (рис. 105).

Рис. 105.


Число ?.

Отношение длины окружности к её диаметру не зависит от радиуса окружности, то есть оно одно и то же для любых двух окружностей. Это число равно ? (рис. 106).

Рис. 106.

9. Векторы

Теорема о разложении вектора по базису.

Если на плоскости даны два неколлинеарных вектора а и b и любой другой вектор с, то существуют единственные числа n и m, такие, что с = nа + mb (рис. 107).

где

Рис. 107.


Теорема о скалярном произведении векторов.

Скалярное произведение векторов равно произведению их абсолютных q величин (длин) на косинус угла между ними (рис. 108).

ОА ? ОВ = ОА ? OB ? cos ?.

Рис. 108.

Основные формулы планиметрии

Для треугольника (рис. 109):

Рис. 109.

где a, b, с – стороны треугольника;

?, ?, ? – противолежащие им углы;

r и R – радиусы вписанной и описанной окружностей;

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука