Укажем здесь два видоизменения рассмотренной ситуации, хотя существуют и многие другие. Все результаты взяты из нескольких источников, все они собраны в шестой главе моей книги «Фрактальные миры: как их выращивать, выстраивать, воображать»[133]
.Сначала рассмотрим случайные фракталы. Это значит, что вместо применения одних и тех же коэффициентов подобия на каждой итерации построения фрактала каждый коэффициент подобия может теперь принимать одно из нескольких значений с заданными вероятностями. В этом случае уравнение Морана выглядит так:
где
На рисунке со следующей страницы – случайный фрактал, состоящий из
Снова введем обозначение
Но что это за число? Разумеется, различные последовательности выбора коэффициентов 1/2 и ¼ дадут нам разные случайные фракталы. Вычисленная нами размерность является средним значением размерностей, которые мы могли бы получить, если бы по тому же алгоритму сгенерировали много фракталов.
Наконец, вернемся к фракталу, изображенному в первой главе. Он получен при помощи четырех преобразований с одинаковыми коэффициентами подобия
Чтобы это выразить, можно, например, обозначив квадранты фрактала метками 1 (нижний левый), 2 (нижний правый), 3 (верхний левый) и 4 (верхний правый). Разрешенные и запрещенные комбинации можно закодировать в виде матрицы. Порядковый номер строки задает квадрант, а порядковый номер столбца – субквадрант этого квадранта. Например, значение в первой строке и втором столбце соответствует нижнему правому субквадранту внутри нижнего левого квадранта. Число 0 в матрице означает, что соответствующий субквадрант не занят, а число 1 – занят. Тогда матрица, кодирующая показанный выше фрактал, имеет вид
Поскольку все коэффициенты подобия равны
(1/2) d
которое можно назвать уравнением Морана с памятью.
Множитель
Загляните в любую книгу по линейной алгебре или в Приложения А.83 и А.84 «Фрактальных миров». Для нашей матрицы
Можно перечислить еще много видоизменений уравнения Морана. Например, есть версия уравнения Морана для случая, когда коэффициент подобия изменяется в зависимости от положения аргумента преобразования. Но нам пока этого достаточно.
Последнее замечание об уравнении Морана. В некоторых из наших примеров мы сводили его к квадратному уравнению. А что делать, если в результате решения квадратного уравнения мы получим комплексное число? Такого просто не может быть: уравнение Морана всегда имеет решение, причем только одно. См. Приложение А.76 «Фрактальных миров».
А теперь кое-что мелким шрифтом об измерении и размерности.
Если мы попытаемся найти меру фигуры при помощи некоторого объекта размерности меньше, чем размерность этой фигуры, то в ответе мы получим ∞; если же мы проводим измерение при помощи объекта размерности большей, чем размерность исходной фигуры, то в ответе получим 0. Расчеты здесь довольно сложные, но можно проиллюстрировать саму идею на следующем примере. Возьмем в качестве фигуры заполненный единичный квадрат – он, несомненно, двумерен.
Представьте, что для измерения его длины мы пытаемся покрыть квадрат бесконечно тонкой нитью. Такая нить любой конечной длины оставит много непокрытых участков, поэтому для покрытия квадрата нужна нить бесконечной длины.
С другой стороны, квадрат помещается в коробку с основанием в форме единичного квадрата и высотой