Читаем Геометрия скорби. Размышления о математике, об утрате близких и о жизни полностью

Чтобы показать, что квадратный корень из 2 не является отношением двух целых чисел, мистер Гриффит рассуждал так. Предположим, что можно записать √2 в виде отношения целых чисел, скажем, √2 = a/b, и пусть эта дробь несократима (так, например, вместо 14/10 мы возьмем 7/5). Теперь возведем обе части в квадрат и получим 2 = a2/b2, откуда 2b2 = a2. Каким является число a2, четным или нечетным? Оно четное, поскольку равно удвоенному числу b2. Тогда каким является само число a, четным или нечетным? Ну раз квадрат четного числа всегда четен, а квадрат нечетного числа всегда нечетен, значит, число a должно быть четным. Это означает, что a = 2c для некоторого целого числа c. Теперь вернемся к равенству 2b2 = a2. Видите, в чем проблема? Хм, 2b2 = a2 = (2c)2 = 4c2. Теперь поделим эти равенства на 2. Что мы видим? Оказывается, b2 = 2c2, откуда b2 – четное число, значит, и b – четное число, но в этом-то и проблема, что оба числа a и b – четные, а мы взяли несократимую дробь a/b. Ха, как здорово.

О ФРАКТАЛАХ МЕЛКИМ ШРИФТОМ

Когда мы говорим, что треугольник Серпинского – единственная фигура, не изменяемая при применении к ней правил треугольника, надо проявить некоторую осторожность. Треугольник Серпинского не является единственной такой фигурой. Например, если применить три правила треугольника ко всей плоскости, то в результате мы снова получим всю плоскость. Зато можно утверждать, что треугольник Серпинского – единственная замкнутая и ограниченная фигура, которая не изменяется при применении к ней всех трех правил треугольника.

Фигура называется замкнутой, если ее дополнение – открытая фигура, а открытой называется фигура, каждая точка которой является центром небольшого круга, лежащего целиком внутри этой фигуры. К примеру, фигура {(x, y): x2 + y2 < 1} является открытой, а {(x, y): x2 + y2 ≤ 1} таковой не является.

Фигура называется ограниченной, если ее можно заключить внутри окружности достаточно большого радиуса.

НЕМНОГО О ФРАКТАЛЬНОЙ РАЗМЕРНОСТИ

В этом разделе гораздо больше математики, чем в остальных главах книги. Здесь мы вкратце обрисуем геометрию размерностей, о которой уже говорилось в пятой главе. Не будем выходить за рамки простой геометрии; в реальном мире всё сложнее из-за присущей природе зашумленности. Мы начали говорить о размерности, задавшись вопросом: сколько копий некоторой фигуры возникнет, если удвоить ее ширину и высоту? Но будет еще проще обобщить другой, связанный с этим подход. Вместо того чтобы увеличивать фигуру, мы оставим ее прежние размеры и попытаемся разбить ее на более мелкие копии, подобные целой фигуре. Мы уже рассматривали такую декомпозицию для треугольника Серпинского: он состоит из трех своих копий, масштабированных с коэффициентом 1/2. Обозначим число копий как N, а коэффициент подобия – как r. Тогда фрактальная размерность d будет задаваться соотношением

N = (1/r)d.

Почему здесь стоит 1/r? Потому что N больше 1, а r меньше 1, и, по крайней мере, в этих условиях d является положительным числом. Чтобы найти d, возьмем логарифм от обеих частей равенства, используем известную из алгебры формулу log((1/r)d) = d log(1/r) и разрешим уравнение относительно d:



В основе этого вычисления лежит предположение о самоподобии фигуры, поэтому d называется размерностью подобия. Для треугольника Серпинского размерность подобия равна



Предположим, что фигура самоподобна, но коэффициенты подобия ее частей неодинаковы. Возможно, каждая из N частей имеет свой коэффициент подобия, r1,…, rN.

Формула для вычисления размерности подобия не позволяет включить более одного коэффициента подобия. Но мы можем записать выражение N = (1/r)d в виде

Nrd = 1, то есть r d +… + rd = 1,

где r d +… + rd – это N слагаемых

Поскольку теперь у нас есть свое слагаемое для каждого коэффициента подобия, то в этом уравнении для размерности подобия найдется место для различных коэффициентов:

r1d +… + rNd = 1.

Это так называемое уравнение Морана.



Например, здесь мы видим фрактал с различными коэффициентами подобия. Как показано на схематическом изображении справа, в этом фрактале

r1 = r2 = r3 = 1/2,

r4 = r5 = 1/4,

и поэтому уравнение Морана принимает вид

3(1/2) d + 2(1/4) d = 1.

Можно подумать, что это уравнение необходимо решать численно, поскольку мы не можем разрешить его относительно d, взяв логарифм от обеих частей равенства. Но в данном случае есть другая возможность, поскольку (1/4) d = ((1/2)2) d = ((1/2) d)2.

Путем введения обозначения (1/2) d = x уравнение Морана приводится к квадратному уравнению

x + 2 x 2 = 1.

Применив формулу для корней квадратного уравнения, мы находим x = (−3 ± √17)/4. Поскольку x = (1/2) d – положительное число, мы берем x = (3 + √17)/4. Наконец, чтобы найти значение d, вычислим логарифм от обеих частей равенства



и найдем отсюда d:



Перейти на страницу:

Похожие книги

Анализ личности
Анализ личности

Вильгельм Райх (1897-1957) основатель телесно-ориентированной психотерапии. Закончив медицинский факультет Венского университета, он увлекся психоанализом и стал первым клиническим ассистентом 3. Фрейда, а затем вице-директором психоаналитической клиники в Вене. Талантливый клиницист и исследователь, обладавший великолепной интуицией, В. Райх создал новое и очень перспективное направление в психотерапии, значение которого осознается только сейчас. Данная книга является основным трудом В. Райха, в котором дается теоретическое обоснование телесно-ориентированной терапии и его оригинальный взгляд на структуру личности.Книга представляет большой интерес для психологов, психотерапевтов и для широкого круга читателей, интересующихся проблемами личностного роста. На русский язык переводится впервые.

Вильгельм Райх

Психология и психотерапия / Психология / Образование и наука