Читаем Гидравлика полностью

Следует отметить, что условие плавной изменяемости должно быть выполнено только в сечениях 1–1 и 2–2 (только в рассматриваемых): между этими сечениями условие плавной изменяемости необязательно.

В формуле (2) физический смысл всех величин приведен ранее.

В основном все так же, как и в случае с невязкой жидкостью, основная разница в том, что теперь напорная линия Е = Н= Z + p/g + X2/2g не параллельна к горизонтальной плоскости сравнения, поскольку имеет места потери напора

Степень потери напора hпр по длине называют гидравлическим уклоном J. Если потеря напора hпр происходит равномерно, то

Числитель в формуле (3) можно рассматривать как приращение напора dH на длине dl.

Поэтому в общем случае

Знак минус перед dH/dl – потому, что изменение напора по его течению отрицательно.

Если рассмотреть изменение пьезометрического напора Z + p/g, то величину (4) называют пьезометрическим уклоном.

Напорная линия, она же линия удельной энергии, находится выше пьезометрической линии на высоту u2/2g: здесь то же самое, но только разница между этими линиями теперь равна x2/2g. Эта разница сохраняется также при безнапорном движении. Только в этом случае пьезометрическая линия совпадает со свободной поверхностью потока.

<p>35. Уравнение Бернулли для неустановившегося движения вязкой жидкости</p>

Для того, чтобы получить уравнение Бернулли, придется определить его для элементарной струйки при неустановившемся движении вязкой жидкости, а затем распространять его на весь поток

Прежде всего, вспомним основное отличие неустановившегося движения от установившегося. Если в первом случае в любой точке потока местные скорости изменяются по времени, то во втором случае таких изменений нет.

Приводим уравнение Бернулли для элементарной струйки без вывода:

здесь учтено, что = Q; Q = m; m = (КД).

Так же, как и в случае с удельной кинетической энергией, считать (КД) не таккто просто. Чтобы считать, нужно связать его с (КД). Для этого служит коэффициент количества движения

Коэффициент a' принято называть еще и коэффициентом Бусинеска. С учетом a', средний инерционный напор по живому сечению

Окончательно уравнение Бернулли для потока, получение которого и являлось задачей рассматриваемого вопроса имеет следующий вид:

Что касается (5), то оно получено из (4) с учетом того, что dQ = wdu; подставив dQ в (4) и сократив , приходим к (6).

Отличие hин от hпр прежде всего в том, что оно не является необратимым. Если движение жидкости с ускорением, что значит d/t > 0, то hин > 0. Если движение замедленное, то есть du/t < 0, то hин < 0.

Уравнение (5) связывает параметры потока только в данный момент времени. Для другого момента оно может уже оказаться не достоверным.

<p>36. Ламинарный и турбулентный режимы движения жидкости. Число Рейнольдса</p>

Как нетрудно было убедиться в вышеприведенном опыте, если фиксировать две скорости в прямом и обратном переходах движения в режимы ламинарное -> турбулентное, то

1 /= 2

где 1 – скорость, при которой начинается переход из ламинарного в турбулентный режим;

2 – то же самое при обратном переходе.

Как правило, 2 < 1. Это можно понять из определения основных видов движения.

Ламинарным (от лат. lamina – слой) считается такое движение, когда в жидкости нет перемешивания частиц жидкости; такие изменения в дальнейшем будем называть пульсациями.

Движение жидкости турбулентное (от лат. turbulentus – беспорядочный), если пульсация местных скоростей приводит к перемешиванию жидкости.

Скорости перехода 1, 2 называют:

1– верхней критической скоростью и обозначают как в. кр, это скорость, при которой ламинарное движение переходит в турбулентное;

2– нижней критической скоростью и обозначают как н. кр, при этой скорости происходит обратный переход от турбулентного к ламинарному.

Значение в. кр зависит от внешних условий (термодинамические параметры, механические условия), а значения н. кр не зависят от внешних условий и постоянны.

Эмпирическим путем установлено, что:

где V – кинематическая вязкость жидкости;

d – диаметр трубы;

R– коэффициент пропорциональности.

В честь исследователя вопросов гидродинамики вообще и данного вопроса в частности, коэффициент, соответствующий uн. кр, называется критическим числом Рейнольдса Reкр.

Если изменить V и d, то Reкр не изменяется и остается постоянным.

Если Re< Reкр, то режим движения жидкости ламинарный, поскольку < кр; если Re > Reкр, то режим движения турбулентный из-за того, что > кр.

<p>37. Осредненные скорости. Пульсационные составляющие</p>

В теории турбулентного движения очень многое связано с именем исследователя этого движения Рейнольдса. Рассматривая хаотическое турбулентное движение, он представил мгновенные скорости, как некоторые суммы. Эти суммы имеют вид:

где ux, uy, uz – мгновенные значения проекций скорости;

p, – то же самое, но для напряжений давления и трения;

Перейти на страницу:

Похожие книги

Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
История космического соперничества СССР и США
История космического соперничества СССР и США

Противостояние СССР и США, начавшееся с запуска Советским Союзом первого спутника в 1957 году и постепенно вылившееся в холодную войну, послужило причиной грандиозных свершений в области освоения космоса. Эта книга включает в себя хронику как советских, так и американских космических исследований и достижений, подробное описание полета Найла Армстронга и База Олдрина на Луну, а также множество редких и ранее не опубликованных фотографий. Авторы книги — Вон Хардести, куратор Национального Смитсонианского аэрокосмического музея, и Джин Айсман, известный исследователь и журналист, показывают, каким образом «параллельные исследования» двух стран заставляли их наращивать темпы освоения космоса, как между США и СССР назревал конфликт, в центре которого были Джон Кеннеди и Никита Хрущев. Это история освоения космоса, неразрывно связанная с историей противостояния двух великих держав на Земле.

Вон Хардести , Джин Айсман

Астрономия и Космос / История / Технические науки / Образование и наука