Читаем Гидравлика полностью

Следует отметить, что условие плавной изменяемости должно быть выполнено только в сечениях 1–1 и 2–2 (только в рассматриваемых): между этими сечениями условие плавной изменяемости необязательно.

В формуле (2) физический смысл всех величин приведен ранее.

В основном все так же, как и в случае с невязкой жидкостью, основная разница в том, что теперь напорная линия Е = Н= Z + p/g + X2/2g не параллельна к горизонтальной плоскости сравнения, поскольку имеет места потери напора

Степень потери напора hпр по длине называют гидравлическим уклоном J. Если потеря напора hпр происходит равномерно, то

Числитель в формуле (3) можно рассматривать как приращение напора dH на длине dl.

Поэтому в общем случае

Знак минус перед dH/dl – потому, что изменение напора по его течению отрицательно.

Если рассмотреть изменение пьезометрического напора Z + p/g, то величину (4) называют пьезометрическим уклоном.

Напорная линия, она же линия удельной энергии, находится выше пьезометрической линии на высоту u2/2g: здесь то же самое, но только разница между этими линиями теперь равна x2/2g. Эта разница сохраняется также при безнапорном движении. Только в этом случае пьезометрическая линия совпадает со свободной поверхностью потока.

35. Уравнение Бернулли для неустановившегося движения вязкой жидкости

Для того, чтобы получить уравнение Бернулли, придется определить его для элементарной струйки при неустановившемся движении вязкой жидкости, а затем распространять его на весь поток

Прежде всего, вспомним основное отличие неустановившегося движения от установившегося. Если в первом случае в любой точке потока местные скорости изменяются по времени, то во втором случае таких изменений нет.

Приводим уравнение Бернулли для элементарной струйки без вывода:

здесь учтено, что = Q; Q = m; m = (КД).

Так же, как и в случае с удельной кинетической энергией, считать (КД) не таккто просто. Чтобы считать, нужно связать его с (КД). Для этого служит коэффициент количества движения

Коэффициент a' принято называть еще и коэффициентом Бусинеска. С учетом a', средний инерционный напор по живому сечению


Окончательно уравнение Бернулли для потока, получение которого и являлось задачей рассматриваемого вопроса имеет следующий вид:


Что касается (5), то оно получено из (4) с учетом того, что dQ = wdu; подставив dQ в (4) и сократив , приходим к (6).

Отличие hин от hпр прежде всего в том, что оно не является необратимым. Если движение жидкости с ускорением, что значит d/t > 0, то hин > 0. Если движение замедленное, то есть du/t < 0, то hин < 0.

Уравнение (5) связывает параметры потока только в данный момент времени. Для другого момента оно может уже оказаться не достоверным.

36. Ламинарный и турбулентный режимы движения жидкости. Число Рейнольдса

Как нетрудно было убедиться в вышеприведенном опыте, если фиксировать две скорости в прямом и обратном переходах движения в режимы ламинарное -> турбулентное, то

1 /= 2

где 1 – скорость, при которой начинается переход из ламинарного в турбулентный режим;

2 – то же самое при обратном переходе.

Как правило, 2 < 1. Это можно понять из определения основных видов движения.

Ламинарным (от лат. lamina – слой) считается такое движение, когда в жидкости нет перемешивания частиц жидкости; такие изменения в дальнейшем будем называть пульсациями.

Движение жидкости турбулентное (от лат. turbulentus – беспорядочный), если пульсация местных скоростей приводит к перемешиванию жидкости.

Скорости перехода 1, 2 называют:

1– верхней критической скоростью и обозначают как в. кр, это скорость, при которой ламинарное движение переходит в турбулентное;

2– нижней критической скоростью и обозначают как н. кр, при этой скорости происходит обратный переход от турбулентного к ламинарному.

Значение в. кр зависит от внешних условий (термодинамические параметры, механические условия), а значения н. кр не зависят от внешних условий и постоянны.

Эмпирическим путем установлено, что:


где V – кинематическая вязкость жидкости;

d – диаметр трубы;

R– коэффициент пропорциональности.

В честь исследователя вопросов гидродинамики вообще и данного вопроса в частности, коэффициент, соответствующий uн. кр, называется критическим числом Рейнольдса Reкр.

Если изменить V и d, то Reкр не изменяется и остается постоянным.


Если Re< Reкр, то режим движения жидкости ламинарный, поскольку < кр; если Re > Reкр, то режим движения турбулентный из-за того, что > кр.

37. Осредненные скорости. Пульсационные составляющие

В теории турбулентного движения очень многое связано с именем исследователя этого движения Рейнольдса. Рассматривая хаотическое турбулентное движение, он представил мгновенные скорости, как некоторые суммы. Эти суммы имеют вид:

где ux, uy, uz – мгновенные значения проекций скорости;

p, – то же самое, но для напряжений давления и трения;

Перейти на страницу:

Похожие книги

Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
История космического соперничества СССР и США
История космического соперничества СССР и США

Противостояние СССР и США, начавшееся с запуска Советским Союзом первого спутника в 1957 году и постепенно вылившееся в холодную войну, послужило причиной грандиозных свершений в области освоения космоса. Эта книга включает в себя хронику как советских, так и американских космических исследований и достижений, подробное описание полета Найла Армстронга и База Олдрина на Луну, а также множество редких и ранее не опубликованных фотографий. Авторы книги — Вон Хардести, куратор Национального Смитсонианского аэрокосмического музея, и Джин Айсман, известный исследователь и журналист, показывают, каким образом «параллельные исследования» двух стран заставляли их наращивать темпы освоения космоса, как между США и СССР назревал конфликт, в центре которого были Джон Кеннеди и Никита Хрущев. Это история освоения космоса, неразрывно связанная с историей противостояния двух великих держав на Земле.

Вон Хардести , Джин Айсман

Астрономия и Космос / История / Технические науки / Образование и наука
Инженерная эвристика
Инженерная эвристика

В книге представлены классические и новейшие — от эвристических до логических — методы активизации инженерно-технического мышления. Авторы демонстрируют междисциплинарный подход к решению изобретательских задач и тренингу интеллекта на основе универсальных языков. Последовательность в решении научно-технических проблем достигается методом выявления и разрешения противоречий. При этом формулировка проблемы в виде парадокса оказывается сильнейшим стимулом для развития творческой мысли.Книга содержит более 170 вопросов и задач, на которых заинтересованный читатель может проверить качественный уровень собственного мышления, а в случае затруднений — обратиться к приводимым решениям и ответам. Многие из этих задач озвучены авторами в 2011–2012 гг. в ходе семинаров и тренингов в рамках проекта ООО «ЛУКОЙЛ-Инжиниринг» «Академия молодого инноватора», на интеллектуальных состязаниях молодых специалистов компании.Рекомендуется инженерам, преподавателям и учащимся инженерно-технических и естественнонаучных специальностей вузов, инновационно ориентированным молодым специалистам производственного и исследовательского комплексов, а также всем читателям, заинтересованным в формировании у себя эффективного, продуктивного, действенного мышления, достижении нового интеллектуального уровня развития.

Дмитрий Анатольевич Гаврилов , Нурали Нурисламович Латыпов , Сергей Владимирович Ёлкин

Технические науки / Психология / Образование и наука