Читаем Гидравлика полностью

Поток – это «живое» явление: все переходные процессы в нем носят непрерывный характер.

<p>40. Распределение скоростей в «живом» сечении потока</p>

Современной гидродинамике удалось разрешить эти проблемы, применив метод статистического анализа. Основным орудием этого метода является то, что исследователь выходит за рамки традиционных подходов и применяет для анализа некие средние по времени характеристики потока.

Усредненная скорость

Ясно, что в любой точке живого сечения любую мгновенную скорость и можно разложить на ux, uy, uz компоненты.

Мгновенная скорость определяется по формуле:

Полученную скорость можно назвать скоростью, усредненной по времени, или средней местной эта скорость ux – фиктивно постоянная и позволяет судить о характеристике потока.

Вычислив uy,ux можно получить вектор усредненной скорости

Касательные напряжения  =  + ,

определим и суммарное значение касательного напряжения . Поскольку это напряжение возникает из-за наличия сил внутреннего трения, то жидкость считают ньютоновой.

Если предположить, что площадь соприкосновения – единичная, то сила сопротивления

где – динамическая вязкость жидкости;

d/dy – изменение скорости. Эту величину часто называют градиентом скорости, или скоростью сдвига.

В настоящее время руководствуются выражением, полученным в вышеупомянутом уравнении Прандтля:

где – плотность жидкости;

l– длина пути, на котором рассматривается движение.

Без вывода приводим окончательную формулу для пульсационной «добавки» касательного напряжения:

<p>42. Параметры потока, от которых зависит потеря напора. Метод размерностей</p>

Неизвестный вид зависимости определяется по методу размерностей. Для этого существует -теорема: если некоторая физическая закономерность выражена уравнением, содержащим к размерных величин, причем оно содержит п величин с независимой размерностью, то это уравнение может быть преобразовано в уравнение, содержащее (к-п) независимых, но уже безразмерных комплексов.

Для чего определимся: от чего зависят потери напора при установившемся движении в поле сил тяжести.

Эти параметры.

1. Геометрические размеры потока:

1) характерные размеры живого сечения l1l2;

2) длина рассматриваемого участка l;

3) углы, которыми завершается живое сечение;

4) свойства шероховатости: – высота выступа и l – характер продольного размера выступа шероховатости.

2. Физические свойства:

1) – плотность;

2) – динамическая вязкость жидкости;

3) – сила поверхностного натяжения;

4) Еж – модуль упругости.

3. Степень интенсивности турбулентности, характеристикой которой является среднеквадратичное значение пульсационных составляющих u.

Теперь применим -теорему.

Исходя из приведенных выше параметров, у нас набирается 10 различных величин:

l, l2, , l, p, , , Eж,u, t.

Кроме этих, имеем еще три независимых параметра: l1, , . Добавим еще ускорение падения g.

Всего имеем к = 14 размерных величин, три из которых независимы.

Требуется получить (ккп) безразмерных комплексов, или, как их называют -членов.

Для этого любой параметр из 11, который не входил бы в состав независимых параметров (в данном случае l1, , ), обозначим как Ni, теперь можно определить безразмерный комплекс, который является характеристикой этого параметра Ni, то есть i-тый -член:

Здесь углы размерности базовых величин:

общий вид зависимости для всех 14 параметров имеет вид:

<p>43. Равномерное движение и коэффициент сопротивления по длине. Формула Шези. Средняя скорость и расход потока</p>

При ламинарном движении (если оно равномерное) ни живое сечение, ни средняя скорость, ни эпюра скоростей по длине не меняются со временем.

При равномерном движении пьезометрический уклон

где l1– длина потока;

hl– потери напора на длине L;

rd – соответственно радиус и диаметр трубы.

В формуле (2) безразмерный коэффициент называют коэффициентом гидравлического трения или коэффициентом Дарси.

Если в (2) d заменить на гидравлический радиус, то следует

Введем обозначение

тогда с учетом того, что

гидравлический уклон

Эту формулу называют формулой Шези.

называется коэффициентом Шези.

Если коэффициент Дарси – величина безразмерр

ная, то коэффициент Шези с имеет размерность

Определимся с расходом потока с участием коэфф

фициента Шези:

Преобразуем формулу Шези в следующий вид:

Величину

называют динамической скоростью

<p>44. Гидравлическое подобие</p>

Понятие о подобии. Гидродинамическое моделирование

Для исследования вопросов сооружения гидроэлектростанций применяют метод гидравлических подобий, суть которого состоит в том, что в лабораторных условиях моделируются точно такие же условия, что и в натуре. Это явление называют физическим моделированием.

Например, чтобы два потока были подобными, требуется их:

1) геометрическое подобие, когда

где индексы н, м соответственно означают «натура» и «модель».

Однако, отношение

Перейти на страницу:

Похожие книги

Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
История космического соперничества СССР и США
История космического соперничества СССР и США

Противостояние СССР и США, начавшееся с запуска Советским Союзом первого спутника в 1957 году и постепенно вылившееся в холодную войну, послужило причиной грандиозных свершений в области освоения космоса. Эта книга включает в себя хронику как советских, так и американских космических исследований и достижений, подробное описание полета Найла Армстронга и База Олдрина на Луну, а также множество редких и ранее не опубликованных фотографий. Авторы книги — Вон Хардести, куратор Национального Смитсонианского аэрокосмического музея, и Джин Айсман, известный исследователь и журналист, показывают, каким образом «параллельные исследования» двух стран заставляли их наращивать темпы освоения космоса, как между США и СССР назревал конфликт, в центре которого были Джон Кеннеди и Никита Хрущев. Это история освоения космоса, неразрывно связанная с историей противостояния двух великих держав на Земле.

Вон Хардести , Джин Айсман

Астрономия и Космос / История / Технические науки / Образование и наука
Инженерная эвристика
Инженерная эвристика

В книге представлены классические и новейшие — от эвристических до логических — методы активизации инженерно-технического мышления. Авторы демонстрируют междисциплинарный подход к решению изобретательских задач и тренингу интеллекта на основе универсальных языков. Последовательность в решении научно-технических проблем достигается методом выявления и разрешения противоречий. При этом формулировка проблемы в виде парадокса оказывается сильнейшим стимулом для развития творческой мысли.Книга содержит более 170 вопросов и задач, на которых заинтересованный читатель может проверить качественный уровень собственного мышления, а в случае затруднений — обратиться к приводимым решениям и ответам. Многие из этих задач озвучены авторами в 2011–2012 гг. в ходе семинаров и тренингов в рамках проекта ООО «ЛУКОЙЛ-Инжиниринг» «Академия молодого инноватора», на интеллектуальных состязаниях молодых специалистов компании.Рекомендуется инженерам, преподавателям и учащимся инженерно-технических и естественнонаучных специальностей вузов, инновационно ориентированным молодым специалистам производственного и исследовательского комплексов, а также всем читателям, заинтересованным в формировании у себя эффективного, продуктивного, действенного мышления, достижении нового интеллектуального уровня развития.

Дмитрий Анатольевич Гаврилов , Нурали Нурисламович Латыпов , Сергей Владимирович Ёлкин

Технические науки / Психология / Образование и наука