Читаем Гильберт. Основания математики полностью

Квантовая механика фон Неймана, безупречная для математиков, столкнулась с тем, что физики предпочитали квантовую механику Дирака, которая оказалась более полезной, несмотря на отсутствие строгости. Благодаря работам Лорана Шварца и Александра Гротендика по функциональному анализу, в 1950-1960 годы дельта-функции приобрели статус математической природы, формализовавшись как обобщенные функции, или распределения. Так формализм Дирака перестал быть математически подозрительным, поскольку вошел в состав «оснащенных»гильбертовых пространств (или триплетов Гельфанда). Идея состоит в том, чтобы связать лучшее в формализме фон Неймана (строгое гильбертово пространство) и лучшее в формализме Дирака (полезная дельта-функция) внутри одной непротиворечивой математической структуры. С этой целью пытаются пойти дальше гильбертова пространства и включить такие своеобразные объекты, как дельта-функция, но не теряя в то же время хорошей геометрии гильбертова пространства. Решение заключается в рассмотрении структуры вокруг пространства, следуя духу теории распределений: взять обычное гильбертово пространство и оснастить его двумя другими пространствами — одним поменьше и другим побольше, — которые содержат соответственно все хорошие функции (тестовые функции) и все плохие функции (своеобразные функции, такие как δ Дирака). Множество из этих трех пространств называют«оснащенным»гильбертовым пространством, или триплетом Гельфанда.



Математические пространства, на которых были построены матричная и волновая механика, были очень разными: одно было дискретным и алгебраическим, другое — непрерывным и аналитическим. Как убедился фон Нейман, нет ничего удивительного в том, что их унификация не может быть достигнута без некоторого насилия над формализмом и математикой. Однако он заметил, что пространства функций, определенных в них, были в основном идентичными. Состояния атома были представлены в матричной механике посредством последовательностей чисел суммируемого квадрата, так что функциональное пространство, которое стояло за этим, было i2, то есть гильбертовым пространством по определению. Волновые функции волновой механики всегда относились к интегрируемому квадрату, то есть принадлежали функциональному пространству Lr И для этих двух пространств действовала теорема Фишера — Риса, хорошо известная математикам с 1907 года и гласящая, что оба эти пространства изоморфны. Так фон Нейман решил головоломку математической эквивалентности квантовых механик, показав, что механика Гейзенберга (сосредоточенная на матрицах и суммах) и механика Шрёдингера (сосредоточенная на функциях и интегралах) математически эквивалентны, поскольку являются вычислениями в двух изоморфных, идентичных гильбертовых пространствах.

До этого времени под гильбертовым пространством понималось одно из двух конкретных пространств £2 или Lr Фон Нейман первым задумал абстрактное гильбертово пространство в современном его понимании. Избегая конкретных представлений, он работал с понятиями, полученными из аксиом, и пришел к распространению спектральной теории Гильберта в соответствии с квантовыми потребностями.

Перейти на страницу:

Все книги серии Наука. Величайшие теории

Похожие книги

Отцы-основатели
Отцы-основатели

Третий том приключенческой саги «Прогрессоры». Осень ледникового периода с ее дождями и холодными ветрами предвещает еще более суровую зиму, а племя Огня только-только готовится приступить к строительству основного жилья. Но все с ног на голову переворачивают нежданные гости, объявившиеся прямо на пороге. Сумеют ли вожди племени перевоспитать чужаков, или основанное ими общество падет под натиском мультикультурной какофонии? Но все, что нас не убивает, делает сильнее, вот и племя Огня после каждой стремительной перипетии только увеличивает свои возможности в противостоянии этому жестокому миру…

Айзек Азимов , Александр Борисович Михайловский , Мария Павловна Згурская , Роберт Альберт Блох , Юлия Викторовна Маркова

Фантастика / Биографии и Мемуары / История / Научная Фантастика / Попаданцы / Образование и наука