(7) Aa: (8) <0=0эS0=0> спецификация
(9) 0=0 предыдущая теорема
(10) S0=0 отделение (строчки 9,8)
Это первое из печальных последствий. Другое получается из неверной спецификации.
(1) Aa:a=a предыдущая теорема
(2) Sa=Sa спецификация
(3) Eb:b=Sa существование
(4) Aa:Eb:b=Sa обобщение
(5) Eb:b=Sb спецификация (ложно!)
Теперь вы убедились, почему необходимы ограничения. Вот простая задачка: переведите (если вы этого уже не сделали раньше) четвертый постулат Пеано в нотацию ТТЧ, и затем выведите эту строчку как теорему.
Если вы поэкспериментируете с теми правилами и аксиомами ТТЧ, которые я привел до сих пор, вы обнаружите, что возможно вывести следующую пирамидальную семью теорем (множество строчек, отлитых из одной формы и отличающихся только тем, что символы чисел 0, S0, SS0, и так далее, идут по нарастающей):
(0+0)=0
(0+S0)=S0
(0+SS0)=SS0
(0+SSS0)=SSS0
(0+SSSS0)=SSSS0
и так далее.
Каждая из теорем этой семьи может быть выведена из предыдущей теоремы с помощью коротенькой, всего лишь в пару строчек, деривации. Результатом является нечто вроде каскада теорем, каждая из которых вызывает к жизни следующую. (Эти теоремы напоминают теоремы pr
, где средняя и правая группы тире возрастали одновременно.)Существует одна строчка, которую легко записать и которая суммирует пассивное значение всех этих строчек, вместе взятых. Вот эта универсально квантифицированная суммирующая строчка:
Aa:(0+a)=a
Однако при помощи правил, данных до сих пор, эту строчку вывести нельзя. Попробуйте сами, и вы в этом убедитесь!
Вы можете подумать, что ситуацию легко исправить, используя следующее:
(ПРЕДЛАГАЕМОЕ) ВСЕОБЩЕЕ ПРАВИЛО: Если все строчки в пирамидальной семье — теоремы, то универсально квалифицированная строчка, их суммирующая, также является теоремой.
Недостаток этого правила в том, что оно не может быть использовано при работе по способу M
. Только люди, думающие о системе, могут знать, что каждая из бесконечного множества строчек — теорема. Следовательно, это правило не может являться частью формальной системы.Мы очутились в странной ситуации, в которой возможно типографским путем производить теоремы о сложении любых
Система является ω-неполной, если все строчки в пирамидальной семье — теоремы, но универсально квантифицированная строчка, их суммирующая, — не теорема.
Кстати, отрицание приведенной суммирующей строчки —
~Aa:(0+a)=a
— тоже не-теорема ТТЧ. Это означает, что первоначальная строчка
С подобной же ситуацией мы сталкиваемся в ТТЧ Мы приняли нотацию, которая способствует созданию у нас некоторых предрассудков Например, использование символа «+» создает у нас впечатление, что любая теорема, использующая этот знак, сообщает нам что-то значимое о хорошо нам знакомой операции, под названием «сложение» Поэтому нам кажется, что предложить «шестую аксиому»
~Ea:(0+a)=a
было бы неверным. Она не совпадает с нашими знаниями о сложении Однако это одна из возможностей расширить ту ТТЧ, что мы сформулировали до сих пор Система, использующая данную строчку в качестве шестой аксиомы, последовательна в том смысле, что в ней нет двух теорем типа
Этот тип противоречивости, созданный наложением (1) пирамидальной семьи теорем, которые, вместе взятые, утверждают, что все натуральные числа имеют определенное свойство, и (2) одной теоремы, утверждающей, что не все числа обладают этим свойством, называется ω-
Все это говорит нам о том, что аксиомы и правила ТТЧ, как мы до сих пор ее представляли, не описывают с достаточной полнотой интерпретации символов этой системы В нашей воображаемой модели понятий, которые эти символы представляют, еще остается место для вариантов Каждый из возможных вариантов системы опишет эти понятия немного полнее, но сделает это по-своему. Какие из символов приобретут «раздражающие» пассивные значения, если мы добавим приведенную выше «шестую аксиому»? Все ли символы окажутся «испорченными», или некоторые из них сохранят то значение, которые мы имели в виду? Предлагаю вам над этим поразмыслить. В главе XIV мы снова встретимся с подобным вопросом; там мы обсудим его подробнее. В любом случае, не будем здесь останавливаться на этом дополнении системы; вместо этого мы попытаемся исправить ω-неполноту ТТЧ.
Недостаток обобщающего правила был в том, что оно требовало знания того факта, что все строчки бесконечной пирамидальной семьи — теоремы; это слишком много для конечного существа. Однако представьте себе, что каждая строчка пирамиды может быть выведена из своей предшественницы регулярным путем. Тогда у нас оказалась бы конечное основание на то, чтобы считать все строчки пирамиды теоремами. Таким образом, трюк состоит в том, чтобы найти ту схему, которая порождает пирамиду, и показать, что сама эта схема является теоремой. Это подобно доказательству того, что каждый гений передает послание своему Мета-гению, как в детской игре в телефончик. Остается только доказать, что эта цепочка посланий начинается с гения — то есть установить, что первая строчка пирамиды — теорема. Тогда мы можем быть уверены, что послание дойдет до БОГа!
В конкретной пирамиде, которую мы рассматривали, такая схема существует; она представлена строчками 4-9 данной ниже деривации.
(1) Aa:Ab:(a+Sb)=S(a+b) аксиома 3
(2) Ab:(0+Sb)=S(0+b) спецификация
(3) (0+Sb)=S(0+b) спецификация
(4) [ проталкивание
(5) (0+b)=b посылка
(6) S(0+b)=Sb добавление S
(7) (0+Sb)=S(0+b) перенос строки 3
(8) (0+Sb)=Sb транзитивность
(9) ] выталкивание
Посылка здесь — (0+b)=b; результат — (0+Sb)=Sb.
Первая строка пирамиды — также теорема; это прямо следует из аксиомы 2. Все, что теперь требуется, это правило, позволяющее нам заключить, что строчка, суммирующая всю пирамиду в целом, тоже является теоремой. Такое правило будет формализованным пятым постулатом Пеано.
Чтобы выразить это правило, нам необходимо ввести кое-какую нотацию.
Давайте запишем правильно сформированную формулу, в которой переменная а свободна:
X{a}
(Там могут встречаться и другие свободные переменные, но нам это неважно.) Тогда запись X{Sa/a} будет обозначать то же самое, с той разницей, что все а будут заменены на Sa. Таким же образом, X{0/а} будет обозначать ту же строку, в которой все а заменены на 0.
Приведем конкретный пример. Пусть X{a} обозначает строчку (0+а)=а. Тогда X{Sa/a} представляет строчку (0+Sa)=Sa, a X{0/a} — строчку (0+0)=0.
(Внимание: эта нотация не является частью ТТЧ; она служит нам лишь для того, чтобы говорить о ТТЧ.)
С помощью этой новой нотации мы можем выразить последнее правило ТТЧ весьма точно:
ПРАВИЛО ИНДУКЦИИ. Предположим, что
Мы подошли так близко, как возможно, к введению пятого постулата Пеано в ТТЧ. Давайте теперь используем его, чтобы показать, что Aa:(0+a)=a действительно является теоремой ТТЧ Выходя из области фантазии в приведенной выше деривации, мы можем использовать правило фантазии, чтобы получить
(10) <(0+b)=bэ(0+Sb)=Sb> правило фантазии
(11) Ab:<(0+b)=bэ(0+Sb)=Sb> обобщение
Это — первая из двух вводных теорем, требующихся для правила индукции другая — первая строка пирамиды — у нас уже имелась Следовательно мы можем применить правило индукции и получить то, что нам требуется
Ab:(0+b)=b
Спецификация и обобщение позволят нам изменить переменную с
Я хочу представить здесь более длинную деривацию ТТЧ с тем, чтобы читатель посмотрел, как она выглядит; эта деривация доказывает простой, но важный факт теории чисел.
(1) Aa:Ab:(a+Sb)=S(a+b) аксиома 3
(2) Ab:(d+Sb)=S(d+b) спецификация
(3) (d+SSc)=S(d+Sc) спецификация
(4) Ab:(Sd+Sb)=S(Sd+b) спецификация (строка 4)
(5) (Sd+Sc)=S(Sd+c) спецификация
(6) S(Sd+c)=(Sd+Sc) симметрия
(7) [ проталкивание
(8) Ad:(d+Sc)=(Sd+c) посылка
(9) (d+Sc)=(Sd+c) спецификация
(10) S(d+Sc)=S(Sd+c) добавление S
(11) (d+SSc)=S(d+Sc) перенос 3
(12) (d+SSc)=S(Sd+c) транзитивность
(13) S(Sd+c)=(Sd+Sc) перенос 6
(14) (d+SSc)=(Sd+Sc) транзитивность
(15) Ad:(d+SSc)=(Sd+Sc) обобщение
(16) ] выталкивание
(17)
(18) Ac:
*****
(19) (d+S0)=S(d+0) спецификация (строчка 2)
(20) Aa:(a+0)=a аксиома 1
(21) (d+0)=d спецификация
(22) S(d+0)=Sd добавление S
(23) (d+S0)=Sd транзитивность (строки 19,22)
(24) (Sd+0)=Sd спецификация (строка 20)
(25) Sd=(Sd+0) симметрия
(26) (d+S0)=(Sd+0) транзитивность (строчки 23, 25)
(27) Ad:(d+S0)=(Sd+0) обобщение
*****
(28) Ac:Ad:(d+Sc)=(Sd+c) индукция (строчки 18,27)
[В сложении S может быть передвинуто вперед или назад.]
(29) Ab:(c+Sb)=S(c+b) спецификация (строчка 1)
(30) (c+Sd)=S(c+d) спецификация
(31) Ab:(d+Sb)=S(d+b) спецификация (строчка 1)
(32) (d+Sc)=S(d+c) спецификация
(33) S(d+c)=(d+Sc) симметрия
(34) Ad:(d+Sc)=(Sd+c) спецификация (строчка 28)
(35) (d+Sc)=(Sd+c) спецификация
(36) [ проталкивание
(37) Ac:(c+d)=(d+c) посылка
(38) (c+d)=(d+c) спецификация
(39) S(c+d)=S(d+c) добавление S
(40) (c+Sd)=S(c+d) перенос 30
(41) (c+Sd)=S(d+c) транзитивность
(42) S(d+c)=(d+Sc) перенос
(43) (c+Sd)=(d+Sc) транзитивность
(44) (d+Sc)=(Sd+c) перенос 35
(45) (c+Sd)=(Sd+c) транзитивность
(46) Ac:(c+Sd)=(Sd+c) обобщение
(47) ] выталкивание
(48)
(49) Ad:
[Если d коммутирует с любым с, то Sd обладает таким же свойством.]
*****
(50) (с+0)=с спецификация (строка 20)
(51) Aa:(0+a)=a предыдущая теорема
(52) (0+с)=с спецификация
(53) с=(0+с) симметрия
(54) (с+0)=(0+с) транзитивность (строчки 50, 53)
(55) Ac:(c+0)=(0+c) обобщение
[О коммутирует с любым с]
*****
(56) Ad:Ac:(c+d)=(d+c) индукция (строчки 49,55)
[Таким образом, любое d коммутирует с любым с]
ТТЧ доказала коммутативность сложения. Даже если вы не следили за всеми деталями этой деривации, важно понять, что, так же как и музыкальная пьеса, она имеет свой собственный естественный «ритм». Это вовсе не случайная про гулка, во время которой мы вдруг наткнулись на нужную строчку. Я ввел «паузы для дыхания», чтобы показать «артикуляцию» этой деривации. В частности, строчка 28 является переломным моментом в деривации — что-то вроде середины в пьесе типа
Легко вообразить себе читателя, который начинает со строки 1 этой деривации, не зная, где он закончит, и постепенно, с каждой новой строкой, понимающего, куда он направляется. Это порождает внутреннее напряжение, очень похожее на то, которое порождает в музыке прогрессия аккордов, указывающая на тонику, но не разрешающаяся в нее. Прибытие к строке 28 подтверждает интуицию читателя и дает ему некое чувство удовлетворения; в то же время, это усиливает его желание дойти до предполагаемой конечной цели.
Строчка 49 — критически важный увеличитель напряжения, поскольку она вызывает ощущение «почти у цели». Прервать деривацию в этот момент было бы очень неприятно. С этого момента мы уже почти можем предсказать развитие событий. Однако вам не хотелось бы прервать музыкальную пьесу в том момент, когда вам уже очевидно, как она разрешится. Вам не хотелось бы
Это типично не только для структуры формальных дериваций, но и для неформальных доказательств. Чувство напряжения, возникающее у математиков, тесно связано с восприятием красоты; это делает математику интересным и стоящим занятием. Обратите внимание, однако, что в самой ТТЧ это напряжение, по-видимому, не отражается. Иными словами, понятия напряжения и раз решения, цели и временной цели, «естественности» и «неизбежности» не формализованы в ТТЧ подобно тому, как музыкальная пьеса не является книгой о гармонии и ритме. Возможно ли создать более сложную формальную систему, которая осознавала бы напряжение и цель внутри дериваций?
Я предпочел бы показать вам, как выводится теорема Эвклида (бесконечность простых чисел), но это, возможно, сделало бы книгу вдвое длиннее. Теперь, после доказательства теоремы, естественным продолжением было бы доказать ассоциативность сложения, коммутативность и ассоциативность умножения и дистрибутивность умножения со сложением. Это создало бы прочную базу для дальнейшей работы.
В нашей теперешней формулировке ТТЧ достигла «критической массы». Ее мощь сравнялась с мощью «Principia mathematica» — в ней стало возможным доказать любую теорему, которую можно найти в стандартном труде по теории чисел. Конечно, никто не стал бы утверждать, что вывод теорем в ТТЧ - это наилучший способ заниматься теорией чисел. Человек, так считающий, принадлежал бы к классу людей, которые думают, что лучший способ узнать, сколько будет 1000×1000 — это нарисовать решетку размером 1000x1000 и подсчитать в ней клеточки. На самом деле, после полной формализации остается единственный путь — дать формальной системе послабление. Иначе она становится такой громоздкой, что теряет всякую практическую пользу. Таким образом, необходимо внести ТТЧ в более широкий контекст, такой, который позволит нам получить правила вывода, ускоряющие деривацию. Для этого нам понадобится формализовать язык, на котором выражены эти правила вывода — то есть метаязык. Можно пойти еще намного дальше; однако никакие из этих трюков не сделают ТТЧ более
Представьте себе, что вы не знали заранее, что ТТЧ окажется неполной — напротив, вы ожидали, что она полна, то есть, что любое истинное высказывание, которое можно выразить в нотации ТТЧ, является теоремой. В таком случае вы могли бы иметь разрешающую процедуру для всей теории чисел. Ваш метод был бы прост; если вы хотите знать, истинно ли высказывание X теории чисел, вы должны закодировать его в строчку
Последний вопрос, который мы рассмотрим в этой главе, таков: должны ли мы так же верить в непротиворечивость ТТЧ, как мы верили в непротиворечивость исчисления высказываний? И если нет, то возможно ли укрепить нашу веру в ТТЧ,
Какой же метод доказательства нам бы хотелось использовать? Здесь мы снова сталкиваемся с проблемой порочного круга. Если мы будем использовать в доказательстве факта о системе те же инструменты, какие используются
С первого взгляда может показаться, что у нас есть такая веревка. Наша цель — доказать, что в ТТЧ есть некоторое типографское свойство (непротиворечивость): в ней не встречаются одновременно теоремы формы
Именно на это надеялась школа математиков и логиков начала века; главой этой влиятельной школы был Давид Гильберт. Их целью было доказать непротиворечивость формализации теории чисел, подобных ТТЧ, используя весьма ограниченный набор логических принципов рассуждения, называемых