Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Черепаха: Забавная штучка. А как насчет второго этапа?

Ахилл: Ну, это совсем просто: надо всего-навсего определить, имеет цепочка природу Будды или нет! Если у нее — природа Будды, то коан — подлинный, а если нет, то он — фальшивка.

Черепаха: Гмм… Это звучит так, словно вы только перенесли нужду в разрешающей процедуре в другую область. ТЕПЕРЬ вам нужна разрешающая процедура для определения природы Будды. Что же дальше? В конце концов, если вы не можете сказать даже того, буддистская ли природа у СОБАКИ,  как же вы собираетесь определить это для любого кусочка цепочки трехмерной укладки?

Ахилл: Мой мастер объяснил мне, что переход из одной области в другую может помочь. Это похоже на перемену точки зрения. Некоторые вещи выглядят сложными под одним углом, но простыми под другим. Он привел в пример сад: глядя на него с одной стороны, вы не видите никакого порядка, только под некоторыми углами перед вами возникает прекрасная упорядоченность. Вы организовали информацию иначе, взглянув на вещи с иной точки зрения.

Черепаха: Понятно. В таком случае, может оказаться, что подлинность коана спрятана в нем где-то глубоко, но когда вам удается перевести его в цепочку, она каким-то образом всплывает на поверхность?

Ахилл: Именно это и открыл мой Мастер.

Черепаха: В таком случае, мне бы хотелось узнать об этой технике побольше. Но сперва скажите мне, как вы можете превратить коан (последовательность слов) в уложенную в пространстве цепочку (трехмерный объект)? Ведь это довольно разные классы предметов.

Ахилл: Это как раз одна из наиболее таинственных вещей, которые я узнал, изучая дзен. Есть два шага: «транскрипция» и «трансляция». Сделать транскрипцию коана — значит записать его фонетическим алфавитом, который содержит только четыре геометрических символа. Эта фонетическая транскрипция коана называется ПОСРЕДНИКОМ.

Черепаха: Как выглядят эти геометрические символы?

Ахилл: Они состоят из гексагонов и пентагонов; вот так (берет лежащую рядом салфетку и набрасывает следующие четыре фигуры):



Черепаха: Выглядит загадочно.

Ахилл: Только для непосвященных. Теперь, когда посредник готов, вы натирайте руки рибосом, и…

Черепаха: Рибосом? Это что, ритуальная мазь?

Ахилл: Не совсем. Это специальный клейкий состав, который помогает цепочке сохранять форму, когда она уложена.

Черепаха: Из чего он сделан?

Ахилл: Точно не знаю, но он клейкий на ощупь и прекрасно работает. Так или иначе, когда вы натерли руки рибосом, вы можете транслировать последовательность символов в посреднике в некий тип укладки цепочки. Как видите, все очень просто.

Черепаха: Подождите! Не так быстро! Как вы это делаете?

Ахилл: Вы берете прямую цепочку и начинаете укладывать ее с одного конца, в соответствии с геометрическими символами посредника.

Черепаха: Значит, каждый из этих символов обозначает особый тип укладки?

Ахилл: Сам по себе нет. Они всегда берутся группами по три. Вы начинаете с одного конца цепочки и с одного конца посредника. Первая тройка символов определяет, что делать с первым дюймом цепочки. Следующие три символа говорят вам, как укладывать второй дюйм. Таким образом, вы шаг за шагом продвигаетесь вдоль цепочки и вдоль посредника, укладывая  каждый крохотный сегмент цепочки, пока посредник не кончится Если вы хорошенько смазали все рибосом, цепочка сохранит свою укладку и у вас получится трансляция коана в цепочку.

Черепаха: Эта процедура не лишена элегантности. Наверное, у вас получаются чертовски интересные цепочки.

Ахилл: Еще бы! Коаны подлиннее транслируются в весьма причудливые структуры.

Черепаха: Могу себе представить. Но чтобы транслировать посредник в цепочку вы должны знать, какой укладке соответствует каждая тройка геометрических символов. Откуда вы это знаете? У вас что, есть словарь?

Ахилл: Да — это замечательная книга, в которой приведен весь Геометрический Код. Если у вас этой книги нет, то, разумеется, вы не можете транслировать коаны в цепочки.

Черепаха: Разумеется нет. Каково происхождение Геометрического Кода?

Ахилл: Его начало восходит к древнему Мастеру по имени Великий Ментор, мой Мастер говорит, что он единственный, кто когда-либо достиг Архи-просветления.

Черепаха: Ах ты батюшки! Словно одного уровня мало Что ж, обжоры бывают всех сортов — почему бы не обжираться и просветлением?

Ахилл: А что, если в слове Архи-просветление закодировано мое имя? А-Х-И-Л.

Черепаха: По моему мнению, это маловероятно. Скорее, там можно найти намек на имя скромной ЧерепАХИ.

Ахилл: При чем здесь вы? Вы даже не достигли ПЕРВОГО состояния просветления, и уж тем более…

Черепаха: Почем знать, почем знать. Может быть те, кто изучил всю подноготную просветления возвращаются в первоначальное, допросветленное состояние Я всегда считала, что дважды просветленный — это снова непросветленный. Но вернемся же к нашему Великому Ментору.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное