Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Путешествующий монах спросил у старухи дорогу к Тайзаиу, известному храму, превращающему тех, кто в нем молится, в мудрецов. Старуха ответила: «Идите прямо». Когда тот удалился, старуха пробормотала себе под нос: «Еще один паломник». Кто-то рассказал об этом случае Джошу, и тот заметил: «Подождите, я сам проверю». На следующий день он отправился тем же путем и задал тот же вопрос. Старуха повторила свой ответ, и Джошу сказал: «Я проверил эту старую женщину».

Черепаха: С его страстью к расследованиям, жаль, что Джошу никогда не работал в ФБР. А скажите, я могла бы повторить то, что вы сейчас сделали, если бы следовала Правилам Искусства Дзен-цепочек, не правда ли?

Ахилл: Совершенно верно.

Черепаха: Я должна буду проделывать все операции в том же ПОРЯДКЕ, как и вы?

Ахилл: Да нет, годится любой порядок.

Черепаха: Разумеется, тогда я получу другую цепочку и, следовательно, другой коан. Теперь скажите мне, я должна буду повторить то же ЧИСЛО операций?

Ахилл: Ни в коем случае. Вы можете делать любое число шагов.

Черепаха: В таком случае, есть бесконечное множество цепочек с природой Будды — а следовательно, бесконечное множество подлинных коанов! Но откуда вы знаете, есть ли какая-либо цепочка, которая НЕ МОЖЕТ быть получена при помощи ваших Правил?

Ахилл: Ах, да — вернемся к вещам, лишенным природы Будды. Получается так, что как только вы научитесь производить цепочки БУДДИСТСКОЙ природы, вы сразу же научитесь производить и HE-БУДДИСТСКИЕ цепочки. Это мой Мастер вдолбил в меня с самого начала.

Черепаха: Прекрасно! Как же это получается?

Ахилл: Очень просто. Вот, смотрите: сейчас я сделаю цепочку, у которой нет природы Будды…

(Он берет цепочку, из которой был «извлечен» предыдущий коан, и завязывает на одном из концов неточку, затягивая ее большим и указательным пальцами.)

Готово: в этой цепочке НЕТ никакой буддистской природы.

Черепаха: Потрясающе! Я просвещаюсь с каждой минутой. И всего-то понадобилась какая-то ниточка? Откуда вы знаете, что у новой цепочки нет буддистской природы?

Ахилл: Не ниточка, а НЕТОЧКА — именно так указал мастер. Основное свойство природы Будды таково: если две правильно сформированные цепочки отличаются только тем, что одна из них имеет неточку на конце, то только ОДНА из этих цепочек может иметь буддистскую природу.

Черепаха: А скажите: есть ли такие цепочки буддистской природы, которые НЕВОЗМОЖНО получить, в каком бы порядке мы не применяли Правила Дзен-цепочек?

Ахилл: Стыдно признаться, но этого я сам точно не знаю. Сначала мой мастер говорил, что буддистская природа цепочки ОПРЕДЕЛЕНА тем, что мы начинаем с одной из пяти начальных позиций и затем строго следуем Правилам. Но позже он сказал что-то о какой-то «Теореме», как бишь его… Гоголя?., или Де Голля? Боюсь, что я так этого и не понял; а может быть, просто не расслышал. Но так или иначе, у меня появилось сомнение, можно ли получить этим методом ВСЕ цепочки с природой Будды. До сих пор мне это удавалось, но ведь буддистская природа — штука непростая, знаете ли…

Черепаха: Я так и думала, судя по «МУ» Джошу. Хотелось бы мне знать…

Ахилл: Что такое?

Черепаха: Я думала о тех двух коанах… Я имею в виду, коан и не-коан: «Этот разум — Будда» и «Этот разум — не Будда». Как они выглядят, если перевести их в цепочки по Геометрическому Коду?

Ахилл: С удовольствием вам покажу.

(Он записывает фонетическую транскрипцию, достает из кармана пару цепочек и начинает аккуратно, дюйм за дюймом, складывать их, следуя тройкам символов, записанных странным алфавитом. Затем он кладет получившиеся цепочки рядом.)

Видите, они различаются.

Черепаха: На мой взгляд, они весьма схожи. О, теперь я вижу, в чем разница: на конце у одной из них — неточка!

Ахилл: Клянусь Джошу, вы правы.

Черепаха: Ага! Я понимаю теперь, почему ваш Мастер не доверял этим коанам.

Ахилл: Неужели?

Черепаха: Согласно его указаниям, НЕ БОЛЕЕ, ЧЕМ ОДНА цепочка из этой пары может иметь природу Будды; так что сразу можно сказать, что один из коанов — подделка.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное