Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Почему назвать это короткой палкой означало пойти против действительности? Может быть, потому, что подобная категоризация дает иллюзию углубления в действительность, в то время как на самом деле это утверждение даже не поцарапало ее поверхности. Можно сравнить его с утверждением «5 — простое число.» Это утверждение оставляет без внимания огромное, бесконечное количество фактов. С другой стороны, не назвать ее короткой палкой — означает проигнорировать этот факт, как бы незначителен он не был. Следовательно, слова ведут к частичной истинности — и, возможно, к частичной ложности — но, безусловно, не к полной истине. Надеяться на слова, чтобы найти истину — все равно, что надеяться на неполную формальную систему, чтобы найти истину. Формальная система даст вам некоторые истины, но, как мы скоро увидим, формальная система, какой бы мощью она не обладала, не может привести ко всем истинным высказываниям. Дилемма математиков такова: на что еще можно опираться, кроме формальных систем? Дилемма последователей дзена такова: на что еще можно опираться, кроме слов? Мумон выражает эту дилемму с предельной ясностью: «Это нельзя выразить словами, и это нельзя выразить без слов.»


Рис. 50. М. К. Эшер. «Кожура» (гравюра на дереве, 1955).

Вот еще один коан о Нансене:[22]

Джошу спросил учителя Нансена: «Какой Путь правилен?»

Нансен ответил: «Правилен повседневный Путь».

Джошу спросил: «Могу ли я его изучать?»

Нансен ответил: «Чем больше вы его изучаете, тем больше вы удаляетесь от него».

Джошу спросил: «Если я не буду его изучать, как же я его узнаю?»

Нансен ответил: «Путь не принадлежит увиденным вещам и не принадлежит неувиденным вещам. Он не принадлежит известным вещам, и он не принадлежит неизвестным вещам. Не ищи его, не изучай его и не называй его. Чтобы оказаться на Пути, стань открытым и широким как небо.» (См. рис. 50.)

Кажется, что это любопытное утверждение полно парадоксов. Оно немного напоминает следующее верное средство от икоты: «Обегите трижды вокруг дома, не думая о слове „волк“.» Дзен-буддизм — это философия, которая, по-видимому, считает, что дорога к абсолютной истине, так же, как единственный верный способ против икоты, должна изобиловать парадоксами.

Изм, режим U и Унмон

Если слова — плохи, и мышление — плохо, то что же тогда хорошо? Разумеется, сам по себе такой вопрос весьма дуалистичен, но поскольку, обсуждая его, мы не претендуем на верность дзену, то попытаемся ответить на него серьезно. Назовем то, к чему стремится дзен, измом. Изм — это антифилософия, способ существования без мышления. Мастерами изма являются камни, деревья, моллюски. Существам же, стоящим на более высокой ступени развития, приходится за это бороться; при этом они никогда не достигнут полного изма. Все же нам иногда удается увидеть проблеск изма; возможно, следующий коан покажет вам такой проблеск:[23]

Хиакуйо захотел послать монаха, чтобы открыть новый монастырь. Он сказал ученикам, что назначит того из них, кто сумеет лучше всех ответить на его вопрос. Поставив кувшин с водой на землю, он сказал: «Кто может сказать, что это такое, не называя при этом его имени?»

Главный монах сказал: «Никто не может назвать это деревянным башмаком.»

Повар Изан перевернул кувшин ногой и ушел.

Хиакуйо улыбнулся и сказал: «Главный монах проиграл.» И Изан стал Мастером нового монастыря.

Сущность дзена — и изма — в том, чтобы подавить восприятие, подавить логическое, словесное, дуалистичное мышление. Это и есть режим U — Ультра; не Интеллектуальный, не Механический, а просто «Ультра». Джошу действовал по способу U; поэтому его МУ «развопросило» вопрос. Для Мастера дзена Унмона способ U был естественным:[24]

Однажды Унмон сказал своим ученикам: «Моя палка превратилась в дракона и проглотила вселенную! Где же теперь реки, и горы, и великая Земля?»

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное