Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Таким образом, ядро — это система, «части» которой, хотя они и невидимы внутри системы, могут быть извлечены и сделаны видимыми. Однако есть и более патологические случаи, такие, как протон и нейтрон, взятые как системы. Существует предположение, что каждый из них состоит из тройки «кварков» — гипотетических частиц, которые могут соединяться по две или по три, образуя при этом многие из известных основных частиц. Однако взаимодействие между кварками настолько сильно, что их не только невозможно увидеть внутри протонов и нейтронов, но и невозможно извлечь оттуда! Таким образом, хотя кварки помогают теоретически объяснить некоторые свойства протонов и нейтронов, их собственное существование, возможно, никогда не будет установлено с достоверностью. Здесь перед нами — антипод «почти разложимой системы», система, которую скорее можно назвать «почти неразложимой». Интересно, однако, что теория протонов и нейтронов (и других частиц), основанная на «модели кварков», дает хорошее количественное объяснение многих экспериментальных результатов, касающихся частиц, предположительно составленных из кварков.

Сверхпроводимость: «парадокс» ренормализации

В главе V мы обсуждали то, как ренормализованные частицы возникают из своих голых центров в результате рекурсивно накапливающихся взаимодействий с виртуальными частицами. Ренормализованную частицу можно рассматривать либо как это сложное математическое построение, либо как некий «бугорок», чем она и является физически. Одно из самых странных и впечатляющих последствий этого способа описания частиц — это объяснение, которое оно дает знаменитому явлению сверхпроводимости (свободному от сопротивления течению электронов в некоторых твердых телах при очень низких температурах).

Оказывается, что электроны в твердых телах ренормализованы в результате их взаимодействия с некими странными квантами вибраций, называемыми фононами (которые, в свою очередь, ренормализованы!). Такие ренормализованные электроны называются поляронами. Вычисления показывают, что при низких температурах два полярона с противоположным спином начинают притягивать друг друга и могут стать определенным образом связанными. При некоторых условиях все поляроны, переносящие ток, связываются по два, образуя так называемые куперовы пары. Парадоксально то, что образование этих пар происходит именно потому, что электроны — голые центры спаренных поляронов — электрически отталкиваются друг от друга. В отличие от электронов, куперовы пары не притягиваются и не отталкиваются; поэтому они могут свободно перемещаться в металле, словно в вакууме. Изменив математическое описание подобного металла с такого, чьими основными единицами являются поляроны, на такое, чьи основные единицы — куперовы пары, вы получите значительно упрощенный набор уравнений. Эта математическая простота указывает на то, что деление на «блоки» куперовых пар — естественный взгляд на сверхпроводимость.

Здесь есть несколько уровней частиц: сама куперова пара, пара составляющих ее поляронов с противоположным спином, электроны и фотоны из которых составлены поляроны; внутри электронов — виртуальные фононы и позитроны… и так далее, и тому подобное. Мы можем смотреть на каждый уровень и воспринимать происходящие там явления согласно нашему пониманию лежащих ниже уровней.

«Запечатывание»

Точно так же, к счастью, нам не нужно знать о кварках всего, чтобы понимать многое в поведении частиц, составной частью которых они могут быть. Специалист по ядерной физике может разрабатывать теории о ядрах, основанные на протонах и нейтронах, и игнорировать как теории о кварках, так и теории, оспаривающие последние. Ядерный физик работает с блочной картиной протонов и нейтронов — описанием, основанным на теориях низших уровней, которое при этом не требует понимания этих теорий. Подобно этому, атомный физик работает с блочной картиной атомного ядра, основанной на теории ядра. Химик работает с блочной картиной электронов и их орбит, создавая на этом основании теории небольших молекул, которые, в свою очередь, могут быть использованы как блоки специалистом по молекулярной биологии, который интуитивно понимает, как соединяются маленькие молекулы, но специализируется в области крупных молекул и их взаимодействий. Далее, специалист по биологии клеток берет блочную картину единиц, усердно изучаемых молекулярным биологом, и пытается использовать ее для объяснения клеточного взаимодействия. Думаю, что вам понятно, к чему я веду. Каждый уровень в каком-то смысле «запечатан» — изолирован от уровней, находящихся ниже его. Это еще один из выразительных терминов Саймона, напоминающий о том, как подводная лодка делится на секции; если одна из частей разгерметизируется, проблема не распространяется на остальные секции, так как двери испорченной секции закрываются, изолируя ее от соседних помещений.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика