Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Компьютер — это сложная комбинация систем обоих типов. Его провода представляют собой предсказуемую систему: они проводят электричество в соответствии с законом Ома. Этот весьма точный закон похож на законы, описывающие поведение газа в баллоне, поскольку он зависит от статистических эффектов: хаотическое поведение биллионов частиц дает в результате предсказуемое общее поведение системы. Компьютер также содержит макроскопические части, такие как печатающее устройство, чье поведение задается определенными электрическими импульсами. То, что печатает это устройство, ни в коей мере не является результатом мириад взаимоуничтожающих микроскопических эффектов. В большинстве компьютерных программ значение каждого бита играет важную роль в том, что напечатает компьютер. От изменения любого бита информации значительно изменяется и конечный результат.

Системы, состоящие только из «надежных» подсистем, — то есть таких подсистем, чье поведение может быть с уверенностью предсказано на основании описания их частей, — играют важнейшую роль в нашей повседневной жизни, поскольку они являются оплотом стабильности. Мы можем быть уверены, что стены не упадут нам на голову, что тротуар окажется сегодня там же, где вчера, что солнце не исчезнет с небосвода, что часы показывают правильное время и так далее. Блочные модели подобных систем практически полностью детерминисткие. Разумеется, другой тип системы, играющей важную роль в нашей жизни, это система, чье поведение варьируется в зависимости от внутренних микроскопических параметров, — зачастую огромного множества таких параметров, — которые не поддаются прямому наблюдению. Наша блочная модель подобной системы будет выражаться в терминах некоего «пространства» ее действия и будет включать вероятностные оценки того, в каком месте этого пространства «приземлится» система в данный момент.

Баллон с газом, который, как я уже сказал, является надежной системой в результате множества взаимоуничтожающих микроскопических эффектов, подчиняется точным, детерминистким законам физики. Это блочные законы, поскольку они рассматривают газ как единое целое, игнорируя его составляющие части. Более того, микроскопическое и макроскопическое описания газа используют совершенно разные термины. Первое требует определения положения и скорости каждой из молекул газа; второе требует определения только трех новых величин температуры, давления и объема. Две первые величины вообще не имеют соответствия на микроскопическом уровне. Математическое соотношение этих трех величин, выраженное в следующем простом уравнении: pV=cT, где с — постоянная, — это закон, который одновременно зависит и не зависит от событий на низшем уровне. Если говорить менее парадоксально, этот закон может быть выведен из законов, управляющих молекулярным уровнем, в этом смысле он зависит от низшего уровня. С другой стороны, этот закон позволяет, при желании, полностью игнорировать низший уровень; в этом смысле он от него не зависит.

Важно иметь в виду, что закон высшего уровня не может быть выражен в терминах низших уровней. «Давление» и «температура» — новые термины, которые не могут быть поняты только на основании низшего уровня. Мы, люди, прямо воспринимаем температуру и давление, поскольку мы так устроены, не удивительно, что мы открыли этот закон. Но существа, которые воспринимали бы газы как абстрактные математические конструкции, должны были бы обладать умением выводить новые понятия, чтобы открыть подобный закон.

Эпифеномены

В завершение этой главы я хотел бы рассказать забавную историю о сложных системах. Однажды я беседовал с двумя программистами, работавшими с операционной системой компьютера, который я использовал. Они сказали, что она запросто справляется со своей задачей, когда к ней подключено менее тридцати пяти человек; но когда это число достигает тридцати пяти, время ответа внезапно замедляется настолько, что с таким же успехом можно отключиться от системы, пойти домой и вернуться попозже. Шутя, я сказал: «Эту проблему решить ничего не стоит — для этого нужно только отыскать то место в операционной системе, где записано число „35“, и поменять его на „60“!» Все рассмеялись. Дело, разумеется, в том, что такого места просто не существует. Откуда же, в таком случае, появляется это критическое число — 35 пользователей? Это видимое следствие общей организации системы — так называемый «эпифеномен».

Так же вы можете спросить о бегуне. «Где в нем содержится число „10“, позволяющее ему пробегать 100 метров за 10 секунд?» Ясно, что оно не содержится ни в каком специальном месте. Время, которое бегун показывает на стометровке, — результат его физического состоянии, быстроты его реакций, и миллиона других факторов, взаимодействующих между собой, когда он бежит. Это время вполне воспроизводимо, но оно не записано нигде в его теле. Оно распределено по всем клеткам его тела и проявляется только во время бега.


Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика