Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Одно небольшое, но значительное различие между обработкой зрительной информации мозгом кота и мозгом обезьяны присутствует на этапе, на котором информация, полученная от обоих глаз, соединяется и образует единый сигнал высшего уровня. Оказывается, что у обезьян это происходит немного позднее, чем у котов; это дает сигналам каждого глаза больше времени для независимой обработки. Это неудивительно, поскольку мы предполагаем, что чем выше стоит данный тип в иерархии интеллекта, тем сложнее будут проблемы, решаемые его зрительным аппаратом; поэтому сигналы должны проходить более долгую обработку, прежде чем получить окончательный «ярлык». Это предположение было весьма убедительно подтверждено наблюдениями за зрительными способностями новорожденного теленка, рожденного, по-видимому, с полностью развитым зрительным аппаратом. Теленок пугается людей и собак, но прекрасно чувствует себя в окружении других телят. Возможно, его зрительная система целиком закодирована в мозгу еще до рождения и требует сравнительно небольшой работы коры. С другой стороны, человеческой зрительной системе, так сильно зависящей от коры, требуется несколько лет, чтобы развиться полностью.

Невральная воронка

Открытия, сделанные до сих пор в области организации мозга, интересны тем, что пока не удалось найти соответствия между крупномасштабной «аппаратурой» и «программным обеспечением высшего уровня» Например, зрительная кора — это крупномасштабная часть аппаратуры, полностью посвященная обработке зрительной информации; однако все известные нам процессы, происходящие там, все еще протекают на низших уровнях. Ничего похожего на узнавание предметов пока в зрительной коре не обнаружено. Это значит, что никто пока не знает, где и каким образом информация, исходящая от сложных и сверхсложных клеток, превращается в узнанные формы, комнаты, картины, лица и так далее. Исследователи пытаются описать способ, при помощи которого множество реакций на низшем, нейронном уровне, словно проходя через воронку, сводится к меньшему числу реакций на высших уровнях, что, в конце концов, приводит к знаменитой «клетке-бабушке» или некоторой сложной нейронной сети, как та, о которой мы упомянули выше. Очевидно этот способ не может быть обнаружен на уровне анатомических частей мозга, скорее, его надо искать на более микроскопическом уровне.

Возможной альтернативой клетки-бабушки может быть постоянный набор нейронов — скажем, несколько дюжин — на узком конце «воронки», любой из них реагирует на появление бабушки в поле зрения. Подобно этому, для каждого отдельного предмета существовала бы специфическая сеть нейронов и некая «воронка», сводящая сложные впечатления к этой сети. Существуют более сложные альтернативы, основанные на той же идее, они включают сеть нейронов, которая может отвечать на стимул по-разному, вместо одного строго определенного способа. Такие сети соответствовали бы «символам» в нашем мозгу.

Необходим ли подобный процесс сужения? Возможно, что наш мозг узнает предметы по их «подписи» на зрительной коре — то есть, по коллективным ответам простых, сложных и сверхсложных клеток. Может быть, мозгу не требуется никакое дальнейшее «сужение» впечатлений, чтобы узнать данный предмет. Однако эта теория представляет следующее затруднение Представьте себе, что вы смотрите на некую сцену. В вашем мозгу появляется «подпись»-отпечаток этой сцены; однако как вы перейдете от этого отпечатка к словесному описанию данной сцены? Например, когда вы смотрите на картины Эдуарда Вийара, французского постимпрессиониста, зачастую требуется несколько секунд, прежде чем вы различите человеческую фигуру. Предположительно, отпечаток увиденного появляется на зрительной коре в первую долю секунды — при этом вы понимаете картину только через несколько секунд. Это только один пример весьма обычного явления — чувства, что в момент узнавания у вас в мозгу что-то «кристаллизуется»; это происходит не тогда, когда свет попадает на сетчатку, но позднее, после того как какая-то часть вашего интеллекта обработала сигналы на сетчатке.

Сравнение с кристаллизацией приводит на ум еще один замечательный образ, взятый из статистической механики: мириады микроскопических, не связанных между собой событий в некоей среде, которые формируют медленно растущие согласованные области. В результате эти мириады крохотных событий полностью изменяют среду: из хаотического множества независимых элементов она превращается в большую, стройную и связную структуру. Если считать, что первичные реакции нейронов представляют собой независимые события, в результате множества отдельных сигналов производящие определенный крупный «модуль» нейронов, то слово «кристаллизация» отлично сюда подходит.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Тайны чисел: Математическая одиссея
Тайны чисел: Математическая одиссея

«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю СотойПрофессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни.В формате pdf A4 сохранен издательский дизайн.

Маркус дю Сотой

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Образование и наука