Какой вывод можно из этого сделать? Возможным объяснением было бы то, что одно и то же воспоминание закодировано одновременно в нескольких местах, расположенных по всей коре — стратегия, которая могла развиться в процессе эволюции, как защита от возможной потери части коры в бою — или во время экспериментов, проводимых нейрофизиологами. Другое возможное объяснение — то, что воспоминания могут восстанавливаться на основе динамических процессов, распространенных по всему мозгу, но при этом могут вызываться возбуждением местных точек. Эта теория основана на современных телефонных сетях, где распределение междугородных звонков не известно заранее, а выбирается в момент данного звонка в зависимости от загруженности телефонных сетей по всей стране. Поломка части сетей не остановит звонки — они будут просто направлены в обход испорченного места. В этом смысле любой звонок потенциально невозможно локализовать. И в то же время любой звонок соединяет всего две точки; в этом смысле локализовать его вполне возможно.
Одно из самых интересных исследований по локализации мозговых процессов проводилось в последние пятнадцать лет Дэвидом Хюбелем и Торстеном Визелем из Харвардского университета. Они проследили путь зрительных впечатлений в мозгу у кошки: сначала возбуждаются нейроны на сетчатке, возбуждение распространяется по направлению к затылку, проходит через боковое коленчатое тело, работающее в качестве «ретрансляционной станции», и прибывает к зрительной коре в задней половине мозга. Прежде всего, в свете результатов Лашли кажется удивительным, что существуют определенные мозговые пути; но еще более замечательными оказались свойства нейронов, расположенных на различных участках этого пути.
Оказывается, что нейроны сетчатки прежде всего воспринимают контраст. Это происходит следующим образом, обычно каждый из этих нейронов возбуждается с постоянной скоростью. Когда на него падает свет, нейрон может начать возбуждаться быстрее, замедлиться, или совсем перестать возбуждаться. Однако это происходит только в том случае, когда соседние участки сетчатки менее освещены. Это означает, что существуют два типа нейронов: «центральные» и «периферийные». Первые посылают сигналы с большей скоростью, когда центр небольшой круглой зоны сетчатки, к которой они принадлежат, освещен, а периферия находится в темноте. Вторые, напротив, увеличивают скорость посылки импульсов тогда, когда центр круга находится в темноте, а внешнее кольцо освещено. «Увидев» светлый центр, периферийные нейроны
С сетчатки сигналы, посланные этими нейронами, направляются по оптическому нерву к боковому коленчатому телу, расположенному близко к центру мозга. Там мы находим прямое соответствие поверхности сетчатки, в том смысле, что нейроны коленчатого тела отвечают только на некоторые стимулы, падающие на определенные места сетчатки. В этом смысле коленчатое тело не представляет особого интереса — это всего-навсего «ретрансляционная станция», и сигналы там не подвергаются дальнейшей обработке (хотя надо все же отдать ему должное — коленчатое тело, по-видимому, усиливает чувствительность к световым контрастам). Образ на сетчатке закодирован в схеме сигналов, посылаемых нейронами бокового коленчатого тела, несмотря на то, что нейроны там расположены не на плоскости сетчатки, а в трехмерном блоке. Таким образом, хотя два измерения здесь соответствуют трем, информация тем не менее сохраняется: еще один пример изоморфизма. Возможно, у этого изменения количества измерений есть некий глубинный смысл, которого мы еще не понимаем полностью. Так или иначе, в нашем знании о зрении пока еще так много пробелов, что мы должны не расстраиваться, а радоваться, что нам удалось, хотя бы до определенного предела, понять данный этап.
Из бокового коленчатого тела сигналы поступают обратно в зрительную кору. Здесь они обрабатываются по-новому. Клетки зрительной коры подразделяются на три категории: простые, сложные, и сверхсложные.