Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

В системе pr и затем в других, более сложных системах мы видели, как значение, в ограниченном смысле этого слова, возникает из изоморфизма, соотносящего типографские символы с числами, арифметическими действиями и отношениями, а строчки типографских символов — с высказываниями. В мозгу нет никаких типографских символов, но есть кое-что получше: активные элементы, которые могут хранить информацию, а также передавать ее и получать новую информацию от других активных элементов. Таким образом, у нас есть активные символы вместо пассивных типографских символов. В мозгу правила смешаны с самими символами, в то время как на бумаге символы — это статичные единицы, а правила находятся у нас в голове. Благодаря строгости формальных систем, которые мы до сих пор рассматривали, читатель может заключить, что изоморфизм между символами и реальными вещами — это жесткое взаимно однозначное соответствие, что-то вроде ниток, соединяющих марионетку с ведущей ее рукой. Однако важно понимать, что это вовсе не так. В той же ТТЧ понятие «пятьдесят» может быть выражено различными символами, скажем:

((SSSSSSSO*SSSSSSSO)+(SO*SO))

и

((SSSSSO*SSSSSO)+(SSSSSO*SSSSSO))

То, что обе эти записи обозначают один и тот же номер, вовсе не ясно априори. Вы можете работать с каждым из этих выражений независимо, пока не наткнетесь на какую-нибудь теорему, которая заставит вас воскликнуть: «Да это же то самое число!»

В вашей голове могут соседствовать различные мысленные образы одного и того же человека, например:

Человек, чью книгу я послал несколько дней тому назад другу в Польшу.

Незнакомец, заговоривший со мной и моими приятелями в кафе сегодня вечером.

То что оба эти образа обозначают одного и того же человека, вовсе не ясно априори. Они могут находиться в вашей голове раздельно, пока, разговаривая с незнакомцем, вы не наткнетесь на тему, которая поможет вам понять, что эти образы относятся к одному и тому же человеку: «Да, вы же тот самый человек!»

Не все мысленные описания человека обязательно соединяются с неким центральным символом, хранящим его имя. Описания могут рождаться и использоваться независимо. Мы можем изобретать несуществующих людей, придумывая их описания, совместить два описания, обнаружив, что они относятся к одному и тому же человеку, разделить одно описание на два, если обнаружим, что оно относится не к одному, а к двум предметам, и так далее. Это «исчисление описаний» находится в самом сердце мышления. Считается, что оно интенсионально, а не экстенсионально: это означает, что описания могут свободно «плавать на поверхности», а не стоять на якоре, привязанные к определенным, известным предметам. Интенсиональность мышления связана с его гибкостью, она дает нам возможность изобретать воображаемые миры, соединять разные описания в одно, разделять одно описание на два, и так далее.

Представьте себе, что подруга, взявшая у вас на время машину, звонит и говорит, что произошла авария машину занесло на мокрой дороге и она перевернулась, упав в кювет «Я чудом избежала смерти,» — говорит она. В голове у вас появляются, одна за другой, соответствующие образы, которые становятся все реальнее по мере того как собеседница добавляет все новые детали; в конце рассказа вся картина стоит у вас перед глазами. Вдруг она, смеясь, сообщает вам что все это — первоапрельская шутка, и что ни с ней, ни с машиной ничего не случилось! В некотором смысле, это ничего не меняет. История и образы вызванные ею не теряют своей жизненности и надолго остаются у вас в памяти. В дальнейшей вы можете считать вашу подругу плохим водителем, поскольку впечатление оставленное ее рассказом, не пропало, когда вы узнали, что это — неправда. Выдумка и факт тесно переплетаются в нашем сознании, и это происходит потому, что мышление предполагает способность к изобретению сложных описаний и манипуляции ими, эти описания совсем не обязательно должны быть привязаны к реальным фактам или вещам.

В основе мышления — гибкое, интенсиональное представление о мире. Как же физиологическая система, такая как мозг, позволяет производить подобное представление?

«Муравьи» мозга

Самые важные клетки мозга — это нервные клетки или нейроны; их в мозгу около десяти миллиардов. (Интересно, что количество глиальных клеток, или глий, превосходит это число почти в десять раз. Считается, что глии играют второстепенную роль по сравнению с нейронами, поэтому мы не будем на них останавливаться.) У каждого нейрона есть несколько синапсов (на компьютерном жаргоне, «портов ввода»), расположенных на дендритах (и иногда — на теле клетки), и один аксон («канал вывода»). Ввод и вывод представляют собой электрохимические потоки, то есть движущиеся ионы. Между портом ввода и выводным каналом находится тело клетки, где принимаются «решения».

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика