Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

ГЛАВА XII: Разум и мысль

Может ли существовать изоморфизм между мозгами?

Теперь, когда мы выдвинули предположение о существовании в мозгу активных подсистем высшего уровня (символов), мы можем вернуться к вопросу о возможном изоморфизме, полном или частичном, между двумя мозгами. Вместо изоморфизма на нейронном уровне (которого наверняка не существует), или на макроскопическом уровне составляющих мозг органов (который наверняка существует, но не говорит нам многого), мы попытаемся найти изоморфизм между мозгами на уровне символов, причем такой изоморфизм, который не только соотносит символы в одном мозгу с символами в другом мозгу, но также сопоставляет схемы активации этих символов. Это значит, что соответствующие символы в этих мозгах соотносятся соответствующим образом. Это было бы настоящим функциональным изоморфизмом — о нем мы уже говорили, пытаясь определить, что общего между различными бабочками.

С самого начала ясно, что стопроцентного изоморфизма между любой парой человеческих существ не существует, так как это означало бы, что мысли одного из них полностью совпадают с мыслями другого. Чтобы это было так, их память также должна быть идентичной — то есть они должны вести абсолютно одинаковую жизнь. Даже однояйцевые близнецы весьма далеки от такой идеальной ситуации.

А как насчет одного-единственного индивида? Когда вы перечитываете то, что сами написали несколько лет назад, то зачастую думаете: «Какой ужас!» — и улыбаетесь, удивляясь тому, какими когда-то были. Хуже того, иногда вы реагируете таким образом на то, что сказали или написали пять минут тому назад. Когда это происходит, это значит, что вы не совсем понимаете того человека, каким были несколько мгновений назад. Изоморфизм вашего мозга сейчас и вашего мозга тогда несовершенен. Как же тогда быть с изоморфизмом вашего мозга с мозгами других людей или других биологических видов?

Другую сторону медали представляет общение, которое иногда возникает между самыми несхожими собеседниками. Подумайте о барьерах, которые вы преодолеваете, читая строки стихов, написанные в тюремной камере Франсуа Вийоном, французским поэтом начала пятнадцатого века. Их создал другой человек, в другую эпоху, заключенный, говорящий на другом языке… Как можно ожидать, что его слова, переведенные на русский, вызовут у вас нужные ассоциации? И все же чувства Франсуа Вийона прорываются к вам сквозь все эти барьеры.

Таким образом, с одной стороны, мы можем оставить всякую надежду найти абсолютный изоморфизм между людьми; однако с другой стороны ясно, что некоторые люди мыслят более похоже, чем другие. Кажется естественным заключить, что между мозгами людей, которые мыслят схожим образом, существует некий частичный изоморфизм на уровне программ — в частности, изоморфизм между (1) репертуаром символов и (2) способами их активации.


Рис. 70. Крохотный фрагмент семантической сети автора.

Сравнение различных сетей семантических связей

Что же такое частичный изоморфизм? Это очень трудный вопрос, в частности, потому, что никто еще не сумел адекватно описать сети взаимосвязанных символов и схемы их активации. Иногда делаются попытки дать схематическое изображение небольшой части этой сети, где каждый символ представлен в виде узла, с входящими и исходящими ребрами. Эти линии иллюстрируют возможность взаимного возбуждения. Подобные схемы — это попытка отобразить интуитивно возникающую у нас идею «близости понятий». Однако существуют различные типы близости, которые выходят на первый план в зависимости от различных контекстов. Крохотный фрагмент моей собственной «семантической сети» показан на рис. 70. Проблема заключается в том, что практически невозможно представить сложную взаимную зависимость множества символов всего лишь при помощи нескольких линий, соединяющих узлы.

Другая проблема с подобными диаграммами заключается в том, что неверно думать, что символ может быть лишь в одном из двух состояний — активном или пассивном. То, что верно на уровне нейронов, не распространяется на их группы — символы. Символы гораздо сложнее нейронов — что естественно, поскольку каждый символ состоит из множества отдельных нейронов. Сообщения, которыми обмениваются символы, — это не простая информация типа «Я активирован»; такая связь принадлежала бы, скорее, уровню нейронов. Каждый символ может быть активирован множеством различных способов, и именно способ активации определяет то, какие символы он попытается в свою очередь активировать. Неясно, однако, каким образом эти сложные взаимосвязи могут быть представлены на схеме и возможно ли это вообще.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Тайны чисел: Математическая одиссея
Тайны чисел: Математическая одиссея

«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю СотойПрофессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни.В формате pdf A4 сохранен издательский дизайн.

Маркус дю Сотой

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Образование и наука