Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Одним из самых замечательных и трудно описуемых свойств сознания является его способность создавать зрительные образы. Как мы создаем мысленный образ нашей гостиной? Или бурного горного ручья? Или апельсина? Как нам удается создавать эти образы бессознательно — образы, которые дают нашим мыслям выразительность, цвет и глубину? С какого мысленного склада они достаются? С помощью какого волшебства нам удается смешивать два или три образа в один, даже не думая о том, как мы это делаем? Знания о том, как это делается, — один из самых ярких примеров процедурных знаний, поскольку мы почти ничего не знаем о том, что такое зрительные образы.

Возможно, что мысленные образы основаны на нашей способности подавлять моторную деятельность. Я имею в виду следующее: когда вы воображаете себе апельсин, в коре вашего мозга могут возникнуть команды взять его, понюхать, осмотреть, и так далее. Ясно, что эти команды не могут быть исполнены, поскольку апельсин находится только у вас в воображении. Но они могут быть направлены по обычным каналам в мозжечок или другие подсистемы мозга, пока в некий критический момент «мысленный кран» не закрывается, предотвращая действительное исполнение команд. В зависимости от того, насколько далеко расположен этот «кран», образы могут казаться более или менее жизненными и натуральными. В гневе мы легко можем вообразить, что хватаем какой-то предмет и швыряем его, или пинаем что-то, хотя на самом деле мы этого не делаем, но чувствуем, что были весьма близки к этому. Возможно, «кран» перекрыл нервные импульсы в самый последний момент.

Вот еще один способ различить между доступным и недоступным видами знания при помощи образов. Вспомните, как вы представляли себе машину, скользящую на мокрой горной дороге. Без сомнения, в вашем воображении гора рисовалась намного большей, чем машина. Почему это происходит? Потому ли, что когда-то вы заметили, что машины обычно бывают меньше, чем горы, запомнили это наблюдение, и воспользовались им, при восстановлении в вашем воображении данной истории? Маловероятное предположение. Или же это случилось благодаря невидимым нам взаимодействиям неких символов, активированных в вашем мозгу? Ясно, что последнее кажется гораздо более вероятным. Знание о том, что машины меньше гор — это не кусок запомненного материала; оно может быть получено дедуктивным путем. Следовательно, оно, скорее всего, закодировано не в одном единственном символе, а является результатом активации и последующего взаимодействия многих символов, таких, например, как «сравнивать», «размер», «гора», «машина» и других. Это означает, что знания хранятся в мозгу не явно, не в каких-либо определенных местах — скорее, они распространены по большим участкам коры. Такие простые факты, как размер предметов, должны быть «собраны по частям», а не просто вынуты из памяти. Итак, даже в знании, которое может быть выражено словами, есть некие сложные, недоступные нашему взгляду процессы, которые подготавливают это знание к тому моменту, когда оно сможет быть выражено словесно.

Мы продолжим исследование объектов под названием «символы» еще в нескольких главах. В главах XVIII и XIX, посвященных искусственному интеллекту, мы будем говорить о возможных способах включения активных символов в программы. В следующей главе мы рассмотрим объяснения, которые модель мозговой деятельности, основанная на символах, предлагает сравнению мозгов разных людей.

Англо-франко-германо-русская сюита

By Lewis Carroll [34]

… et Frank L. Warrin [35]

… und Robert Scott [36]

… и Д. Г. Орловской.


Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Тайны чисел: Математическая одиссея
Тайны чисел: Математическая одиссея

«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю СотойПрофессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни.В формате pdf A4 сохранен издательский дизайн.

Маркус дю Сотой

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Образование и наука