Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

По мере того, как рассказ продолжается, вы дополняете ваш мысленный образ дороги: там есть глубокий кювет, куда машина могла упасть. Значит ли это, что вы активируете символ «кювет» или что вы уточняете некоторые параметры в символе «дорога»? Без сомнения, верно и то и другое. Дело в том, что сеть нейронов, составляющих символ «дорога», может быть активирован разными путями, и вы выбираете, какая из его подсистем будет активирована в данный момент. Одновременно с этим, вы активируете символ «кювет», что, в свою очередь, влияет на способ активации символа «дорога», поскольку нейроны этих двух символов могут обмениваться сигналами друг с другом. (Это может показаться немного запутанным, поскольку я смешиваю здесь два уровня описания, пытаясь представить одновременно как символы, так и составляющие их нейроны.)

Не менее важными, чем имена существительные, являются глаголы, предлоги, и так далее. Они также активируют символы, которые начинают затем обмениваться сигналами. Схемы активации символов для глаголов и символов для имен существительных, разумеется, отличны друг от друга, что означает, что физически эти символы могут быть организованны по-разному. Например, символы для существительных могут быть расположены в каких-то определенных местах, в то время как символы для глаголов и предлогов могут иметь «щупальца» по всей коре; существует множество разных возможностей.

Когда рассказ окончен, вы узнаете, что вас разыграли, — все это было только шуткой. Наше умение производить символы-примеры на основе символов-классов, подобно тому, как мы можем получить изображение монетки, заштриховав положенную на нее бумагу, позволяет нам представлять ситуации, не будучи при этом рабами действительности. Тот факт, что одни символы могут служить базой для создания других символов, дает нам некую мысленную свободу от окружающей реальности; мы можем создавать искусственные вселенные, где возможны любые события, которые мы можем описать как угодно детально. Но при этом у символов-классов, на ветвях которых расцветают эти воображаемые цветы, глубокие корни в реальной жизни.

Обычно символы играют изоморфные роли по отношению к возможным событиям, хотя иногда активируются символы, представляющие невозможные ситуации, — например, туба, откладывающая яйца, или говорящая кошка. Граница между возможным и невозможным весьма нечетка. Воображая некое гипотетическое событие, мы приводим определенные символы в активное состояние и, в зависимости от того, насколько хорошо они взаимодействуют между собой (что, предположительно, отражается в том, насколько легко нам довести данную мысль до конца), мы говорим, что это событие «возможно» или «невозможно».

Таким образом, термины «возможно» и «невозможно» весьма субъективны. На самом деле большинство людей легко соглашаются с тем, какие события могут случиться и какие менее вероятны; это объясняется тем, что все мы имеем схожие структуры в мозгу. Однако существует пограничная зона, в которой субъективный характер воображаемых миров становится очевидным. Глубокое изучение того, какие именно воображаемые события люди считают «возможными» или «невозможными», пролило бы свет на поведение символов, лежащих в основе человеческой мысли.

Интуитивные законы физики

Когда рассказ был окончен, у вас в голове сложилась детальная модель того, что случилось; все предметы в этой модели повинуются физическим законам. Это значит, что те же законы скрыто присутствуют в самой схеме активации символов. Разумеется, фраза «физические законы» не означает здесь физических законов в том виде, как они излагаются учеными; скорее, имеются в виду интуитивные, блочные законы, которым мы повинуемся с тем, чтобы выжить.

Интересно то, что мы можем по желанию выдумать целую серию событий, идущих вразрез с законами физики. Например, если я попрошу вас вообразить, что две машины, идущие навстречу друг другу, вместо того, чтобы столкнуться, проходят одна сквозь другую, вы представите себе соответствующую сцену без труда. Интуитивные физические законы могут быть «отменены» законами воображаемыми; но то, как это происходит, как рождаются в мозгу подобные последовательности событий — даже сама сущность всякого зрительного образа — все еще является для нас глубочайшей загадкой.

Нет нужды говорить, что в нашем мозгу существуют интуитивные законы, описывающие поведение не только неодушевленных предметов, но и растений, животных, людей и государств — иными словами, блочные законы биологии, психологии, социологии и так далее. Все внутренние представления подобных понятий с необходимостью включают черты блочных, обобщенных моделей: детерминизм здесь приносится в жертву ради простоты Наша модель реального мира способна предсказать только вероятность того или иного гипотетического события — но она не предсказывает ничего с точностью физики.

Знание процедурное и знание декларативное

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Тайны чисел: Математическая одиссея
Тайны чисел: Математическая одиссея

«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю СотойПрофессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни.В формате pdf A4 сохранен издательский дизайн.

Маркус дю Сотой

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Образование и наука