Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Можно ли активировать один единственный символ не активируя при этом никаких других? Вероятно, нет. Подобно тому, как все вещи в мире существуют в контексте других вещей символы всегда пребывают в контакте с целыми созвездиями других символов. Это не означает, что символы невозможно отличить один от другого. Приведу простой пример в большинстве видов имеются мужские и женские особи, чьи роли тесно взаимосвязаны, однако это не значит что мужчину невозможно отличить от женщины. Каждый из них отражен в другом подобно стеклянным сферам в сети Индры. Рекурсивная связь функций F(n) и M(n) в главе V не мешает каждой функции иметь свои собственные характеристики. Связь между этими функциями сравнима с отношением между парой СРП вызывающих одна другую. Отсюда мы можем перейти к целой сети тесно взаимосвязанных схем — гетерархии взаимодействия рекурсивных процедур. Связи здесь настолько сильны что ни одна схема не может быть активирована в изоляции но при этом активация каждой схемы своеобразна и легко отличима от активации других схем. Кажется что сравнение мозга с колонией СРП не так уж плохо!

Таким же образом символы со всеми их сложными связями между собой прочно сцеплены друг с другом и тем не менее различимы. Возможно что для этого необходимо идентифицировать нейронную сеть или ту же сеть плюс тип активации или же что нибудь совершенно в другом роде. В любом случае если символы — части реальности то должен существовать способ их аккуратного отображения в мозгу. Однако если бы нам и удалось идентифицировать некоторые символы это еще не означало бы что их можно активировать по отдельности.

Символы насекомых

Способность производить примеры на основе классов и классы на основе примеров лежит в основе нашего интеллекта это одно из основных различий между процессом мышления человека и процессом мышления других животных. Конечно я сам никогда не принадлежал к другим видам и мне не приходилось испытывать на собственном опыте их способ мышления — но со стороны очевидно что никакой другой вид не формирует общие понятия как это делаем мы и не воображает гипотетические миры — варианты действительности помогающие нам принимать решения. Рассмотрим для примера, ставший знаменитым язык пчел — танцы возвращающихся в улей пчел-работников при помощи которых они сообщают своим собратьям о том где есть нектар. Хотя у каждой пчелы может иметься рудиментарный набор символов, которые активируются этим танцем, нет основания предполагать, что запас символов в пчелином мозгу может быть расширен. Пчелы и другие насекомые по видимому не умеют обобщать — то есть развивать новые символы классы на основе примеров, которые показались бы человеку почти идентичными.

Классический эксперимент с осами описан в книге Дина Вулдриджа «Механический человек» (Dean Wooldridge Mechanical Man):

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Тайны чисел: Математическая одиссея
Тайны чисел: Математическая одиссея

«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю СотойПрофессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни.В формате pdf A4 сохранен издательский дизайн.

Маркус дю Сотой

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Образование и наука