Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Если это звучит для вас слишком абстрактно, давайте рассмотрим конкретный пример: Диалог «Крабий канон». При написании этого Диалога два существующих символа — «музыкальный канон-ракоход» и «словесный диалог» — должны были быть активированы одновременно и им пришлось взаимодействовать. Как только это произошло, остальное было почти неизбежно: родился новый символ-класс, который в дальнейшем мог активироваться самостоятельно. Был ли он в моем мозгу всегда, в пассивном состоянии? В таком случае то же должно быть верно для любого человека, в чьем мозгу когда-либо имелись составляющие символы, даже если новый символ-класс никогда не был там активирован. Тогда, чтобы подсчитать количество символов в мозгу любого человека пришлось бы учитывать все пассивные символы — все возможные комбинации и комбинации всех возможных типов активации всех известных символов. Это включало бы даже фантастические создания, которые наш мозг изобретает во время сна — странные смеси идей, которые просыпаются, когда их «хозяин» засыпает… Существование этих «потенциальных символов» показывает, что представлять мозг, как строго определенную коллекцию символов в хорошо определенных состояниях, было бы слишком большим упрощением. Точно охарактеризовать состояние мозга на уровне символов гораздо сложнее.

Символы — программное обеспечение или аппаратура?

Думая о громадном и непрерывно растущем количестве символов в мозгу, вы можете задаться вопросом — а не наступит ли такой момент, когда мозг насытится, и в нем просто не окажется больше места для нового символа? Предположительно, такое могло бы произойти, если бы символы не пересекались и не накладывались бы один на другой — если бы данный нейрон никогда не выступал бы в разных ролях. Тогда символы были бы подобны людям в лифте: «Осторожно. максимальная вместимость 350 275 символов!»

Однако это вовсе не обязательная черта моделей функционирования мозга. На самом деле, пересечение и сложная связь символов между собой скорее являются правилом; вероятно, каждый нейрон, вместо того, чтобы быть членом единственного символа, функционирует, как часть сотен различных символов.

Это звучит немного тревожно — если дело обстоит именно так, почему бы тогда не считать, что каждый нейрон — часть каждого существующего символа? Если так, то символы было бы невозможно локализовать — каждый символ идентифицировался бы с целым мозгом. Это объяснило бы результаты, полученные Лашли при удалении частей коры головного мозга у крыс; однако нам пришлось бы отказаться от нашего первоначального намерения разделить мозг на отдельные физические подсистемы. Наша характеристика символов как «реализации понятий на уровне аппаратуры» оказывалась бы, в лучшем случае, слишком упрощенной. Ведь если бы каждый символ состоял из тех же нейронов, что и все остальные символы, то какой смысл был бы вообще говорить о различных символах? Какой была бы тогда «подпись» активации данного символа — иными словами, как можно было бы отличить активацию символа А от активации символа В? Не разрушило ли бы это всю нашу теорию? Даже если полного совпадения символов и не происходит, все же, чем больше они пересекаются, тем труднее будет нам поддерживать жизнь нашей теории. (Одна из возможностей пересечения символов представлена на рис. 68.)

Существует возможность спасти теорию, основанную на символах, даже когда те физически в значительной степени или даже полностью совпадают. Представьте себе поверхность пруда, на которой могут возникать самые различные типы волн. Аппаратура — сама вода — остается неизменной, но она может быть «возбуждена» по-разному. Подобные различные состояния — программы — одной и той же аппаратуры могут быть отличены друг от друга.

Предлагая эту аналогию, я не утверждаю, что все символы — не что иное, как различные типы «волн», распространяющихся в однородной нейронной среде, которая не может быть подразделена на физически различимые символы. Однако вполне возможно, что для того, чтобы отличить активацию одного нейрона от активации другого, важно не только локализовать эти нейроны, но и точно определить соответствующие моменты их активации. Какой нейрон активировался раньше, и насколько? Сколько сигналов в секунду послал данный нейрон? Таким образом, разные символы могут сосуществовать в одном и том же наборе нейронов — они характеризуются различными схемами активации. Разница между теорией, предполагающей физически различные символы, и теорией пересекающихся символов, различающихся друг от друга типом активации, в том, что первая предполагает реализацию понятий на уровне аппаратуры, а вторая — частично на уровне аппаратуры и частично на уровне программ.


Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Тайны чисел: Математическая одиссея
Тайны чисел: Математическая одиссея

«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю СотойПрофессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни.В формате pdf A4 сохранен издательский дизайн.

Маркус дю Сотой

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Образование и наука