Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Рис. 68. На этой схематической диаграмме нейроны изображены в виде точек на плоскости. Два пересекающиеся пути нейронов отмечены разными оттенками серого цвета. Может случиться так, что два независимых нейронных сигнала одновременно устремляются по этим путям, проходя друг сквозь друга, как две волны на поверхности пруда (Рис. 52). Это иллюстрирует идею о том, что два активных символа могут частично состоять из одних и тех же нейронов, которые могут быть активированы одновременно. (Из книги Джона К. Экклса «Лицом к лицу с реальностью» (John С. Eccles, «Facing Reality»), стр. 21.)

Отделяемость разума

Итак, в наших попытках понять процессы мышления мы столкнулись с двумя основными проблемами. Одна состоит в том, чтобы понять, каким образом активация нейронов на низшем уровне вызывает активацию символов на высшем уровне. Другая проблема — в том, чтобы объяснить активацию символов на высшем уровне, не прибегая при этом к терминологии низшего, нейронного уровня. Если последнее возможно (как утверждает рабочая гипотеза, лежащая в основе большинства современных исследований по искусственному интеллекту), то интеллект может возникнуть и в других, отличных от мозга, типах аппаратуры. Таким образом, можно представить интеллект как характеристику, отделимую от аппаратуры, в которой она заключается — иными словами, интеллект был бы заключен не в аппаратуре, а в программе. Это означало бы, что явления сознания и интеллекта — это явления высшего порядка в том же смысле, как и многие другие сложные явления природы; они управляются своими законами высшего уровня, которые, разумеется, зависят от низшего уровня, но, тем не менее, могут быть от него отделены.

С другой стороны, если бы схемы активации символов оказались совершенно неосуществимыми без нейронов аппаратуры (или их симуляции), это означало бы, что интеллект неотделим от мозга, и что его гораздо труднее объяснить, чем какую-либо другую систему, основанную на иерархии законов на нескольких различных уровнях.

Вернемся к удивительному коллективному поведению, наблюдаемому в муравьиных колониях, поведению, в результате которого строятся огромные, сложные муравейники, хотя в приблизительно 100 000 нейронах муравьиного мозга почти наверняка не заложена никакая информация о структуре муравейника. Каким же образом, в таком случае, строится муравейник? Где находится нужная информация? Подумайте, например, над тем, где может находиться информация, необходимая для постройки арок, подобных тем что показаны на рис. 69. Она должна быть каким-то образом распространена по колонии, выражаясь в распределении каст, возрастов — а также, возможно, в физических характеристиках самого муравьиного тела. То-есть, взаимодействие между муравьями настолько же определяется их шестиногостью, размером, и т. п., насколько оно определяется информацией, хранящейся у них в мозгу. Возможно ли создать Искусственную Муравьиную Колонию?


Рис. 69. Конструирование арки термитами-рабочими Macrotermes bellicosus. Каждая колонна надстраивается путем добавления шариков, сделанных из земли и экскрементов. С внешней стороны левой колонны можно видеть термита откладывающего на колонну такой шарик Другие работники, уже поднявшие в челюстях шарики на верх колонны, укладывают их на растущих концах. Когда колонна достигает определенной высоты, термиты, видимо, ориентируясь по запаху начинают наращивать колонну под углом к соседней. Законченная арка показана на заднем плане. (Рисунок Турида Холлдоблера из книги Е. О. Вильсона «Общества насекомых» (Е. О. Wilson, «The Insect Societies») стр. 230)

Можно ли изолировать один символ?

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Тайны чисел: Математическая одиссея
Тайны чисел: Математическая одиссея

«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю СотойПрофессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни.В формате pdf A4 сохранен издательский дизайн.

Маркус дю Сотой

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Образование и наука