Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Один из канонов «Музыкального приношения» особенно необычен. Это трехголосный канон под названием «Canon per tonos» («Тональный канон»). Самый высокий голос исполняет Королевскую тему; два других голоса дают каноническую гармонизацию, основанную на второй теме, причем нижний голос ведет свою мелодию в до миноре (общая тональность всей фуги), а верхний - ту же мелодию, но на пять ступеней выше. Отличительным свойством этого канона является то, что в конце — или, вернее, когда нам кажется, что канон заканчивается — его тональность меняется с до минора на ре минор. Бах каким-то образом ухитряется смодулировать (поменять тональность) прямо под носом слушателей! Канон сконструирован таким образом, что его кажущийся финал неожиданно плавно переходит в начало; этот процесс можно повторить, придя на этот раз к тональности ми минор, которая в свою очередь оказывается началом! Эти последовательные модуляции уводят слушателя во все более далекие тональные «провинции», так что после нескольких из них он чувствует себя уже безнадежно далеко от начальной тональности. Однако, чудесным образом, после шести модуляций мы возвращаемся все к тому же до минору. Все голоса теперь звучат ровно на октаву выше, чем в начале - пьеса может быть естественным образом прервана на этом месте. Вы можете подумать, что Бах именно это и намеревался сделать — однако Бах, несомненно, упивался возможностью продолжать этот процесс бесконечно. Может быть, поэтому он и написал на полях «Пусть Королевская слава возрастает подобно этой модуляции». Чтобы подчеркнуть заложенную в описанном каноне возможность естественного бесконечного движения, я буду называть его «Естественно Растущий Канон».

В этом каноне Баха мы впервые сталкиваемся с примером «Странных Петель». «Странная Петля» получается каждый раз, когда, двигаясь вверх или вниз по уровням иерархической системы, мы неожиданно оказываемся в исходном пункте. (В нашем примере это система музыкальных тональностей.) Иногда, описывая систему со Странной Петлей, я использую термин Запутанная Иерархия. В дальнейшем тема Странных Петель прозвучит еще не раз. Иногда она будет спрятана, а иногда будет лежать на поверхности; иногда она будет проводиться слева направо, иногда — вверх ногами, а иногда — ракоходом. Мой совет читателю — «Quaerendo invenietis».

Эшер

Как мне кажется, самые яркие и впечатляющие зрительные реализации идеи Странных Петель представлены в работах голландского графика М. К. Эшера, жившего с 1898 по 1971 год Эшер был создателем одних из самых интеллектуально стимулирующих рисунков всех времен Многие из них берут свое начало в парадоксе, иллюзии или двояком значении. Среди первых поклонников графики Эшера оказались математики, это неудивительно, так как его рисунки часто основаны на математических принципах симметрии или структуры. Однако типичный рисунок Эшера представляет из себя нечто гораздо большее, чем только лишь симметрию или определенную структуру часто в его основе лежит некая идея, представленная в художественной форме В частности, Странная Петля - одна из наиболее часто повторяющихся в работах Эшера тем. Взгляните, например, на литографию «Водопад» (рис. 5) и сравните ее бесконечно спускающуюся шестиступенчатую Петлю с бесконечно поднимающейся шестиступенчатой Петлей «Тонального канона». Сходство поистине удивительное! Бах и Эшер проводят одну и ту же тему в двух различных «ключах»: музыка и изобразительное искусство.

Рис. 5. М. К. Эшер. «Водопад».

В работах Эшера встречаются различные типы Странных Петель: они могут быть расположены по порядку в зависимости от того, как туго они «затянуты». Литография «Подъем и спуск» (рис. 6), на которой монахи плетутся по лестнице, навсегда уловленные Петлей, является самой свободной версией, так как Петля здесь содержит множество ступеней.

Рис. 6. М. К. Эшер. «Подъем и спуск».

Более «тугая» Петля представлена в «Водопаде», который, как мы уже видели, содержит всего шесть ступеней. Читатель может возразить, что понятие «ступени» весьма неопределенно: к примеру, можно считать, что «Подъем и спуск» имеет не сорок восемь (ступеньки), а всего четыре (лестничные клетки) уровня.

Рис. 7. М. К. Эшер. «Рука с зеркальным шаром».


Рис. 8. М. К. Эшер. «Метаморфоза II».


Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное