Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Парадокс Эпименида является Странной Петлей «в одну ступеньку», так же, как «Картинная галерея» Эшера. Но какое отношение имеет он к математике? В этом как раз и заключается открытие, сделанное Гёделем. Он попытался использовать математические рассуждения для анализа самих же математических рассуждений. Идея заставить математику заняться «самоанализом» оказалась необычайно продуктивной; теорема Гёделя о неполноте, пожалуй, самое важное её следствие. То, что эта теорема утверждает, и то, как это утверждение в ней доказывается, это разные вещи, которые мы подробно рассмотрим в дальнейшем. Саму теорему можно сравнить с жемчужиной, а метод доказательства — с устрицей, её скрывающей. Мы восхищаемся сияющей простотой жемчужины; устрица же является сложным живым организмом, в чьем нутре зарождается эта таинственно простая драгоценность.

Теорема Гёделя впервые увидела свет как «теорема VI» в его статье 1931 года «О формально неразрешимых суждениях в „Principia Mathematica“ и родственных системах, I». Теорема утверждает следующее:

Каждому ω-непротиворечивому рекурсивному классу формул k соответствует рекурсивный символ классов r такой, что ни v Gen r ни Neg (v Gen r) не принадлежат к Flg (к), где v - свободная переменная r.

В оригинале это было написано по-немецки; читатель, возможно, думает, что с тем же успехом можно было бы это на немецком и оставить. Постараемся привести перевод на более понятный язык.

Все непротиворечивые аксиоматические формулировки теории чисел содержат неразрешимые суждения.

Это наша жемчужина.

В ней трудно увидеть Странную Петлю, потому что эта Петля спрятана в «устрице» — в доказательстве. Доказательство теоремы Гёделя о неполноте вращается вокруг автореферентного (описывающего самого себя) математического суждения, так же как парадокс Эпименида — вокруг такого суждения в языке. Говорить о языке, используя для этого сам язык, несложно; гораздо труднее вообразить, как может говорить само о себе математическое суждение о числах. На самом деле, уже для того, чтобы связать идею автореферентного суждения с теорией чисел, понадобился гениальный ум. Интуитивно придя к мысли о возможности такого суждения, Гёдель преодолел одну из основных трудностей. Само же создание автореферентного суждения было делом техники, раздуванием костра из блистательной искры мгновенного прозрения.

Мы остановимся на теореме Гёделя в последующих главах; но чтобы покуда не оставить читателя в полной тьме, я несколькими штрихами обрисую суть идеи в надежде на то, что это заставит вас задуматься. Для начала уясним, в чем здесь основная трудность. Математические суждения описывают свойства целых чисел (мы будем говорить здесь о суждениях теории чисел). Ни целые числа, ни их свойства не являются сами по себе суждениями. Суждения теории чисел не говорят ничего про суждения теории чисел; они не более как суждения теории чисел. В этом и заключается проблема; однако Гёдель сумел увидеть глубже того, что лежит на поверхности.

Гёдель предположил, что суждение теории чисел могло бы быть о суждении теории чисел (возможно даже о себе самом), если бы сами числа могли обозначать суждения. Иными словами, в центре его построения находится идея кода. В этом коде, обычно именуемом «Гёделевой нумерацией», символы и последовательности символов обозначаются числами. Таким образом, любое суждение теории чисел, будучи последовательностью специальных символов, получает Гёделев номер, что-то вроде телефонного номера или номерного знака машины. В дальнейшем, для ссылки на данное суждение используется соответствующий Гёделев номер. С помощью этого кодирующего трюка суждения теории чисел приобретают двоякое значение: они могут быть поняты как суждения теории чисел, а так же как суждения о суждениях теории чисел.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное