Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Необходимо проводить различие между простыми типами обратной связи, возникающими в процессе торможения и подавления, и петлями, возникающими между различными уровнями информации, показанными на схеме Централизованной Догмы. Оба эти явления, в каком-то смысле, являются примерами обратной связи, но последнее намного глубже первого. Когда некая аминокислота, скажем, триптофан или изолеицин, действует как обратная связь (в форме индуктора) и присоединяется к своему репрессору, чтобы воспроизвестись в большем количестве, она не объясняет, как именно ее производить, а лишь приказывает энзимам увеличить ее производство. Это можно сравнить со звуками радио, которые, достигнув уха слушателя, могут вызвать у того желание увеличить или уменьшить громкость. Совсем другое дело — ситуация, в которой сам диктор велит слушателям изменить громкость, или настроиться на другую волну — или даже объясняет, как построить другое радио! Такая ситуация гораздо более похожа на коммуникацию между информационными уровнями, поскольку здесь информация, заключенная в радиосигнале, «расшифровывается» и переводится в мысленные структуры. Радиосигнал состоит из компонентов, чье символическое значение важно — это похоже более на пример использования, чем упоминания. С другой стороны, когда сигнал слишком громок, символы теряют свое значение и воспринимаются просто как громкие звуки — пример упоминания, скорее чем использования. Этот случай более походит на петли обратной связи, при помощи которых белки регулируют собственное воспроизводство.

Существует предположение, что разница между двумя соседними клетками имеющими совершенно одинаковый генотип, но разные функции, заключается в том, что, благодаря подавлению различных сегментов их геномов, у них оказываются различные наборы активных белков. Эта гипотеза объясняет феноменальные различия между клетками в разных органах человеческого тела.

Два простых примера различия

Процесс, при помощи которого одна первоначальная клетка воспроизводится снова и снова, порождая множество различных клеток со специальными функциями, можно сравнить с распространением некоего письма по цепочке, где каждый человек должен скопировать первоначальное послание, при этом добавив к нему нечто свое. Через некоторое время письма будут очень отличаться друг от друга.

Еще одним примером идеи дифференциации является простая компьютерная аналогия различающего авто-репа. Представьте себе коротенькую программу контролирующуюся при помощи переключателя с двумя позициями, А и В. Внутренний параметр программы — натуральное число N. Программа может работать в двух режимах А или В. Когда она работает в режиме А, она самовоспроизводится в соседнем районе компьютерной памяти — но при этом новый, «дочерний» параметр N возрастает на единицу. Работая в режиме В, программа не самовоспроизводится — вместо этого она вычисляет величину выражения:

(-1)/(2N+1)

и добавляет результат к накопленной общей сумме.

Предположим, что в начале в памяти имелась одна копия программы, N = 0, и программа находилась в режиме А. Результатом явится копия программы в соседнем районе памяти, N будет равняться 1. Повторив процесс, мы получим новую копию в соседнем районе памяти, с N = 2. И так далее, и тому подобное… Память при этом загружается большой программой. Когда память заполняется, процесс останавливается. Теперь мы можем считать, что память занята одной большой программой, составленной из множества похожих, но дифференцированных модулей — «клеток».

Теперь представьте, что мы переключаем эту большую программу на режим В. Что при этом получается? Первая «клетка» дает 1/2. Вторая «клетка» дает -1/3 и добавляет это к предыдущему результату. Третья «клетка» добавляет к общей сумме +1/5 …

В результате весь «организм» — большая программа — вычисляет сумму ряда:

1 -1/3 +1/5 -1/7 +1/9 -1/11 +1/13 -1/15 +…

Число членов этого ряда равно количеству «клеток», умещающихся в памяти. И поскольку этот ряд сходится (хотя и медленно), стремясь к π/4, его можно назвать «фенотипом», чья функция — вычисление величины знаменитой математической постоянной.

Смешение уровней в клетке

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика