Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Предположим, например, что дано высказывание «все формальные арифметические системы неполны»; вы спрашиваете программу: «Полны ли „Principia Mathematical“». Сканируя имеющуюся в ее распоряжении информацию (часто называемую базой данных), программа может заметить, что если бы ей удалось установить, что «Principia Mathematica» — это формальная арифметика, то она могла бы ответить на вопрос. Таким образом, высказывание «„Principia Mathematica“ — это формальная арифметика» становится подзадачей, после чего в действие вступает метод упрощения задач. Если программа сможет найти что-либо еще, что могло бы способствовать подтверждению (или опровержению) задачи или подзадачи, она начнет работать над этой информацией — и так далее, рекурсивным образом. Этот процесс называется обратным сцеплением данных, поскольку он начинается с цели и затем отступает назад — предположительно к уже известным вещам. Если представить графически основную задачу, подзадачи, подподзадачи и так далее, у нас получится структура дерева, поскольку основная задача может включать несколько подзадач, каждая из которых, в свою очередь, может подразделяться на несколько подподзадач… и т. д.

Обратите внимание, что этот метод не гарантирует решения, так как внутри системы может не существовать способа установить, что «Principia Mathematica» — формальная арифметика. Это, однако, означает не то, что задача или подзадача являются ложными утверждениями, а лишь то, что они не могут быть получены на основании сведений, имеющихся в распоряжении системы в данный момент. Когда такое случается, система может напечатать что-нибудь вроде: «Я не знаю». Тот факт, что некоторые вопросы остаются открытыми, разумеется, подобен неполноте, от которой страдают некоторые хорошо известные формальные системы.

Осознание дедуктивное и осознание аналогическое

Этот метод дает системе возможность дедуктивного осознания представленной области, поскольку она может выводить правильные умозаключения на основании известных ей фактов. Однако ей не хватает так называемого аналогического осознания — умения сравнивать ситуации и замечать сходство между ними, что является одной из основ человеческого мышления. Я не хочу сказать, что аналогические мыслительные процессы не могут быть втиснуты в эти рамки, просто их гораздо труднее выразить с помощью подобного типа формализма. В настоящее время логические системы стали менее популярны по сравнению с типами систем, позволяющих естественно проводить сложные сравнения.

Как только вы соглашаетесь с тем, что представление знаний — совершенно иное дело, чем простое записывание чисел, миф о том, что «у компьютера — слоновья память», становится легко опровергнуть. То, что хранится в памяти, совсем не обязательно аналогично тому, что программа знает, поскольку, даже если определенный кусок информации и записан где-то внутри сложной системы, в системе может не быть процедуры, правила или какого-либо иного способа управляться с данными и вызывать эту информацию — она может быть недоступна. В таком случае, вы можете сказать, что данная информация «забыта», поскольку доступ к ней временно или навсегда утрачен. Таким образом компьютерная программа может «забыть» что-то на высшем уровне, но помнить это на низшем уровне. Здесь мы снова сталкиваемся с вездесущим различием уровней, из которого, возможно, можем узнать многое о нас самих. Когда мы что-то забываем, это скорее всего означает, что утеряна «указка» высшего уровня, а не то, что какая-либо информация стерта или разрушена. Это говорит о том, насколько важно следить, как у вас в голове «записываются» новые впечатления, поскольку вы никогда не можете сказать заранее, в какой ситуации вам понадобится вытащить что-то из памяти.

От компьютерных хайку — к грамматике СРП

Сложность представления знаний в человеческой голове впервые поразила меня, когда я начал работать над программой по созданию английских предложений, основанных на неожиданном выборе и соединении слов. Я пришел к этой идее довольно интересным путем. Как-то я услышал по радио несколько примеров хайку, сочиненных компьютерами. Они меня чем-то глубоко затронули. Идея заставить компьютер производить нечто, что обычно считается искусством, была довольно юмористична и в то же время содержала элемент глубокой тайны. Меня позабавил юмор и мотивировала загадочность — даже противоречивость — программирования творческих актов. Тогда я и решил написать программу, еще более загадочную и противоречивую, чем программа хайку.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное