Мы видим, что на земле есть две молекулы, одна из которых хороша для копирования (ДНК), а другая — для действия (белки). Возможно ли разработать такую систему, в которой одна и та же молекула выполняла бы обе функции? Или же существуют веские, основанные на анализе системы аргументы, доказывающие, что деление этой работы на две части дает значительное преимущество? Ответа на этот вопрос я не знаю.[73]
Другой вопрос, возникающий по поводу представления знания, это модульность. Насколько легко ввести новое знание? Насколько легко получить доступ к старому знанию? Насколько модулярны книги? Все это зависит от многих факторов. Если из книги, в которой главы тесно связаны между собой и ссылаются друг на друга, убрать одну главу, то эту книгу станет практически невозможно понять. Так, потянув за одну паутинку, вы разрушаете всю паутину. С другой стороны, книги, главы которых менее зависимы друг от друга, гораздно более модулярны.
Рассмотрим прямолинейную программу, производящую теоремы на основе аксиом и правил вывода ТТЧ. У «знаний» подобной программы — два аспекта. Они находятся косвенно в аксиомах и правилах и явно — в произведенных теоремах. В зависимости от того, под каким углом вы смотрите на знания, вы скажете, что они либо модулярны, либо распространены по всей программе и совершенно не модулярны. Представьте себе, например, что вы написали такую программу, но забыли включить в нее Аксиому I из списка аксиом. После того, как программа вывела тысячи теорем, вы обнаруживаете свою ошибку и вставляете новую аксиому. Тот факт, что вам это легко удается, показывает, что неявные знания системы модулярны; однако вклад новой аксиомы в явные знания системы станет заметен не скоро — после того, как произведенный ею эффект распространится по системе, подобно тому, как по комнате, в которой разбили флакон с духами, медленно распространяется аромат. В этом смысле, новое знание включается в систему постепенно. Более того, если бы вы захотели вернуться назад и заменить Аксиому I на ее отрицание, для этого вам пришлось бы убрать все теоремы, в деривации которых участвовала Аксиома I. Ясно, что явные знания системы далеко не так модулярны, как ее неявные знания.
Было бы полезно научиться делать пересадку знания в модулярной форме. Тогда, чтобы обучить человека французскому языку, нужно было бы лишь, проникнув в его мозг, определенным образом изменить его нейронную структуру, — и человек бегло заговорил бы по-французски! Разумеется, все это только юмористические мечтания.
Другой аспект представления знаний зависит от того, как мы хотим эти знания использовать. Должны ли мы, получив новую информацию, сразу делать выводы? Должны ли мы постоянно делать сравнения и проводить аналогии между новой и старой информацией? В шахматной программе, например, если вы хотите получить дерево анализа вариантов, то построение, включающее позиции на доске и минимум ненужных повторений, будет предпочтительнее, чем построение, повторяющее одну и ту же информацию в различной форме. Но если вы хотите, чтобы ваша программа «понимала» позицию, глядя на структуры на доске и сравнивая их с уже известными ей структурами, тогда повторение одной и той информации в разных формах будет более полезным.
Существует несколько философских школ, по-разному трактующих лучшие способы представления знания и работы с ним. Одна из наиболее влиятельных школ пропагандирует представление знаний с помощью формальной нотации, подобной нотации ТТЧ, — с использованием препозиционных связок и кванторов. Не удивительно, что основные операции в подобной системе выглядят как формализация дедуктивных рассуждений. Логические заключения могут быть сделаны при помощи правил вывода, аналогичных соответствующим правилам ТТЧ. Спрашивая такую систему о какой-либо идее, мы ставим перед ней цель в виде строчки, которую необходимо вывести. Например: «Является ли МУМОН теоремой?» Тут вступают в действие автоматические рассуждающие механизмы, которые пытаются приблизиться к цели, используя различные методы упрощения задач.