Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

В каком-то смысле, все возможные задачи являются лишь вариантами задачи собаки и кости. Многие проблемы разворачиваются не в физическом, но в некоем концептуальном пространстве. Поняв, что прямолинейное движение к цели приводит вас к абстрактному «забору», вы можете либо (1) попытаться отойти в сторону от цели, следуя случайному маршруту (при этом вы надеетесь, что рано или поздно наткнетесь на скрытую «калитку», сквозь которую сможете пройти и подойти к вашей кости), либо (2) попытаться найти такое новое «пространство» проблемы, в котором не окажется абстрактного забора, отделяющего вас от цели — в таком пространстве вы сможете идти прямо к цели. Первый метод может показаться слишком ленивым, а второй — слишком трудным. Все же решения, требующие модификации пространства задачи, чаще бывают результатом мгновенного озарения, чем результатом серии долгих раздумий. Возможно, эти прозрения приходят из самого сердца разума — и, само собой разумеется, наш ревнивый мозг надежно защищает этот секрет.

Так или иначе, проблема заключается не в том, что упрощение задач само по себе ведет к неудаче — напротив, это весьма полезный прием. Проблема лежит глубже, как можно выбрать подходящую внутреннюю интерпретацию задачи? В каком пространстве вы ее располагаете? Какие действия сокращают дистанцию между вами и вашей целью в выбранном вами пространстве? На математическом языке это может быть выражено как задача нахождения подходящей метрики (функции расстояния) между состояниями. Вам надо найти такую метрику, в которой расстояние между вами и целью было бы очень коротким.

Поскольку нахождение внутреннего представления само по себе является задачей — и весьма непростой! — вы можете попытаться приложить технику упрощения задач к ней самой. Для этого вам придется каким-то образом представить огромное множество абстрактных пространств, что является весьма сложным проектом. Я пока не слышал, чтобы кто-нибудь пытался сделать подобное. Это может быть лишь интересной теоретической возможностью, на практике совершенно невыполнимой. В любом случае, ИИ очень не хватает программ, которые могут «отойти в сторону» и посмотреть, что происходит — и затем, используя эту перспективу, лучше сориентироваться для нахождения цели. Одно дело — написать программу, которая умеет выполнять единственное задание, даже такое, для выполнения которого, как нам кажется, нужен интеллект, и совсем другое дело — написать действительно думающую программу! Эта разница аналогична разнице между осой Sphex (см. главу XI), чьи инстинктивные действия кажутся весьма разумными, и человеком, за ней наблюдающим.

Снова режим I и режим М

Разумной программой, по-видимому, будет программа, достаточно гибкая для решения разнообразных задач. Она научится решать каждую из них и в процессе этого будет приобретать опыт. Она будет способна работать в согласии с набором правил, но в нужный момент сможет посмотреть на свою работу со стороны и решить, ведут ли данные правила к стоящей перед ней цели. Она будет способна прекратить работу по данным правилам и, если потребуется, выработать новые правила, лучше подходящие для данного момента.

Многое в этом обсуждении может напомнить вам о головоломке MU. Например, отход в сторону от конечной цели напоминает об отходе в сторону от MU, выводя все более длинные строчки, которые, как вы надеетесь, рано или поздно помогут вам получить MU. Если вы похожи на описанную наивную собаку, то можете чувствовать, что уходите в сторону от «кости MU» каждый раз, когда ваша строчка получается длиннее двух букв, если же вы — «собака» поумней, то понимаете, что использование длинных строчек может иметь определенный смысл — нечто вроде приближения к калитке, ведущей к кости MU.

Между предыдущим обсуждением и головоломкой MU есть еще одна связь: два операционных режима, приведшие к решению головоломки MU — Механический режим и Интеллектуальный режим. В первом из них вы работаете в системе жестких правил; в последнем вы всегда можете выйти из системы и взглянуть на проблему со стороны. Подобная перспектива означает возможность выбора определенного представления проблемы; работа же внутри системы сравнима с применением техники упрощения задач, не выходя из пределов уже данного представления. Комментарии Харди о стиле Рамануяна — в особенности, о его готовности изменять собственные гипотезы — иллюстрируют это взаимодействие между режимом M и режимом I в творческой мысли.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное