Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

В связи с этим возникает вопрос, отходящий немного в сторону от ИИ. Когда мы видим слово «Я» или «мне» в тексте, к чему мы его относим? Например, подумайте о фразе «ВЫМОЙ МЕНЯ», которую иногда можно увидеть на грязном кузове грузовика. Кого это «меня»? Может быть, это какой-то несчастный заброшенный ребенок, который, желая быть вымытым, нацарапал эти слова на ближайшей поверхности? Или же это грузовик, требующий купания? Или сама фраза желает принять душ? А может быть, это русский язык ратует за собственную чистоту? Эту игру можно продолжать до бесконечности. В данном случае, эта фраза — только шутка имеется в виду, что мы должны на определенном уровне предположить, что эти слова написал сам грузовик, требующий, чтобы его вымыли. С другой стороны, эти слова ясно воспринимаются как написанные ребенком, и мы находим эту ошибочную интерпретацию забавной. Эта игра основана на прочтении слова «меня» на неправильном уровне.

Именно такой тип двусмысленности возник в этой книге, сначала в «Акростиконтрапунктусе» и позже в обсуждении Геделевой строки G (и ее родственников). Мы дали разбивальным записям следующую интерпретацию «Меня нельзя воспроизвести на патефоне X», интерпретацией недоказуемого суждения было «Меня нельзя доказать в формальной системе X» Возьмем последнее предложение. Где еще вы встречали суждение с местоимением «я», прочитав которое, вы автоматически предположили, что «я» относится не к человеку, произносящему это предложение, но к самому предложению? Я думаю, таких случаев очень немного. Слово «я» когда оно появляется, например, в Шекспировском сонете, относится не к четырнадцатистрочной поэтической форме, напечатанной на странице, а к существу из плоти и крови, стоящему за этими строчками.

Как далеко мы обычно заходим, пытаясь определить, к кому относится «я» в предложении? Мне кажется, что ответ заключается в том, что мы пытаемся найти мыслящее существо, которому можно приписать авторство данных строк. Но что такое «мыслящее существо»? Нечто такое, с чем мы можем с легкостью сравнить самих себя. Есть ли характер у Вайзенбаумовой программы «Доктор»? И если да, то чей это характер? Недавно на страницах журнала «Science» появился спор на эту тему.

Это возвращает нас к вопросу о том, кто же на самом деле сочиняет компьютерную музыку. В большинстве случаев, за подобными программами стоит человеческий разум, и компьютер используется, с большей или меньшей изобретательностью, как инструмент для воплощения человеческих идей. Программа, которая это исполняет, на нас совсем не похожа. Это простой и бесхитростный набор команд не обладающий гибкостью, пониманием того, что он делает, или самосознанием. Если когда-нибудь люди создадут программы с этими свойствами, и эти программы начнут сочинять музыкальные произведения, тогда мне кажется, наступит время разделить наше восхищение между программистом, создавшим такую замечательную программу, и самой программой обладающей музыкальным вкусом. Я думаю, что это случится только тогда, когда внутренняя структура программ будет основываться на чем-то, напоминающем «символы» в нашем мозгу и их пусковые механизмы, которые отвечают за сложное понятие значения. Подобная внутренняя структура наделила бы программу такими свойствами, с которыми мы могли бы до определенной степени идентифицировать себя. Но до тех пор мне не кажется правильным говорить «Эта пьеса была написана компьютером».

Доказательство теорем и упрощение программ

Вернемся теперь к истории ИИ. Одним из ранних шагов в этом направлении была попытка создания программы, способной доказывать теоремы. Концептуально это то же самое, что создание программы, способной искать деривацию MU в системе MIU — с той разницей, что формальные системы здесь часто были сложнее, чем система MIU. Это были версии исчисления предикатов, представляющего собой расширенный — с использованием кванторов — вариант исчисления высказываний. В действительности большинство правил исчисления предикатов содержится в ТТЧ. Трюк при написании такой программы заключается в том, чтобы снабдить ее чувством направления, чтобы программа не блуждала по всему пространству возможностей, а следовала лишь по «важным» тропинкам, которые, в соответствии с некими разумными критериями могут привести к нужной строчке.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное