Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Именно такой метод был разработан Артуром Самуэлем в его замечательной шашечной программе. Метод Самуэля состоял в одновременном использовании динамического (с заглядыванием вперед) и статического (без заглядывания вперед) способов оценки любой данной позиции. Статический метод основывался на простой математической функции нескольких величин, характеризующих любую позицию на доске; это вычислялось практически мгновенно. В свою очередь, динамический метод основывался на создании «дерева» возможных будущих ходов, ответов на них, ответов на ответы и так далее (как было показано на рис. 38). Некоторые параметры в функции статической оценки могли варьироваться, в результате чего получались разные версии этой функции. Стратегия Самуэля заключалась в том, чтобы путем естественного отбора находить все лучшие и лучшие значения этих параметров.

Это делалось следующим образом: каждый раз, когда программа оценивала позицию, она делала это одновременно статистически и динамически. Ответ, полученный путем анализа вариантов, — назовем его Д — использовался для нахождения следующего хода. Цель С — статистической оценки — была сложнее: после каждого хода переменные параметры немного исправлялись таким образом, чтобы С возможно больше приближалось к Д. В результате знание, полученное путем динамического анализа дерева, частично включалось в параметры статистической оценки. Короче, идея заключалась в том, чтобы постепенно превратить сложный динамический метод в гораздо более простую и эффективную функцию статической оценки.

Здесь возникает изящный рекурсивный эффект. Дело в том, что динамическая оценка любой данной позиции включает просчет вперед на конечное число ходов — скажем, семь. При этом промежуточные позиции, получающиеся после каждого возможного хода, также должны получить какую-то оценку. Но когда программа оценивает эти позиции, она, разумеется, уже не может просчитывать на семь ходов вперед — иначе ей пришлось бы анализировать четырнадцать возможных позиций, затем двадцать одну и так далее, и тому подобное — что породило бы бесконечный регресс. Вместо этого программа пользуется статическими оценками позиций, возникающих при анализе. Таким образом, схема Самуэля включает сложную обратную связь, в процессе которой программа непрерывно пытается превратить оценки, основанные на просчете вариантов, в более простой статический подход; этот подход в свою очередь играет ключевую роль в динамическом взгляде вперед. Таким образом, оба этих метода тесно связаны между собой, и каждый рекурсивным путем извлекает пользу из улучшений в другом методе.

Уровень игры шашечной программы Самуэля крайне высок и сравним с уровнем лучших человеческих игроков мира. Если это так, то почему бы не приложить ту же идею к шахматам? Международный комитет, собравшийся в 1961 году, чтобы обсудить возможность компьютерных шахмат, и включавший датского международного гроссмейстера и математика Макса Эйве, пришел к печальному заключению, что использование метода Самуэля в шахматах было бы примерно в миллион раз труднее, чем в шашках. По-видимому, это закрывает данный вопрос…

Удивительно высокого уровня игры шашечных программ недостаточно для того, чтобы утверждать, что искусственный интеллект уже создан; однако этого успеха также не следует преуменьшать. Это комбинация идей о том, что такое шашки и как их анализировать и программировать. Некоторые читатели могут подумать, что эта программа ничего, кроме шашечного мастерства самого Самуэля, не доказывает. Но это неверно по крайней мере по двум причинам. Во-первых, хорошие игроки выбирают ходы, руководствуясь мысленными процессами, которых они сами полностью не понимают — они пользуются интуицией. Однако до сих пор никому не известен способ стопроцентного использования собственной интуиции; лучшее, что мы можем сделать, это задним числом использовать наши «впечатления» или «мета-интуицию» (интуицию о собственной интуиции), чтобы с их помощью попытаться объяснить природу собственной интуиции. Но это было бы только грубым приближением к действительной сложности интуитивных методов. Поэтому практически невозможно, чтобы Самуэль скопировал в своей программе собственные методы игры. Есть и другая причина, по которой не следует путать игру Самуэлевой программы с игрой ее создателя — программа его регулярно обыгрывает! Это вовсе не парадокс — не более, чем тот факт, что компьютер, запрограммированный на вычисление π, может делать это гораздо быстрее самого программиста.

Какую программу можно назвать оригинальной?

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное