Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Ваша персональная разрешающая процедура для определения подлинности коана, возможно, уже сработала без необходимости использовать Геометрический Код или Искусство Цепочек Дзена. Если отсутствие местоимений или упрощенный синтаксис вас не насторожили, то это должно было сделать странное «Г0025» под конец текста. Что это такое? Простая оплошность — проявление «вируса», который заставил программу напечатать вместо английского слова, обозначающего какой-либо предмет, внутреннее название «узла» (в действительности, атома ЛИСПа), где хранилась вся информация об этом предмете. Таким образом, это окошко, сквозь которое мы можем заглянуть в низший уровень лежащего в основе программы «разума дзена» — уровень, который должен был бы оставаться невидимым. К несчастью, подобных окошек в низший уровень человеческого разума дзен-буддистов не существует.

Последовательность действий, хотя до какой-то степени и случайная, определяется рекурсивной процедурой ЛИСПа под названием КАСКАД. Эта процедура создает цепь действий, связывающихся между собой произвольным образом. Хотя ясно, что степень понимания мира, которой обладает этот сочинитель коанов, далека от совершенства, работа над этой программой продолжается, в надежде сделать ее продукцию более похожей на подлинные коаны.


Рис. 116. Осмысленный рассказ на арабском языке. [A.Khatibi, M.Sijelmassi, «The Splendour of Islamic Calligraphy» Нью-Йорк, изд-во Риццоли, 1976.)

Грамматика для музыки?

А как насчет музыки? Может показаться, что эту область легко закодировать в грамматике типа УСП или какой-нибудь подобной программе. Продолжив это наивное рассуждение, можно сказать, что значение языка опирается на связь с окружающим миром, в то время как музыка — чисто формальна. В звуках музыки нет связи с окружающим миром; это чистый синтаксис — нота следует за нотой, аккорд за аккордом, такт за тактом…

Но постойте — в этом анализе что-то не так. Почему одни произведения гораздо глубже и красивее других? Это происходит потому, что форма в музыке выразительна, и действует на некие подсознательные области нашего разума. Звуки музыки не связаны с рабами или городами-государствами, но они порождают в нас множество эмоций. В этом смысле музыкальное значение все-таки зависит от неуловимых связей между символами и вещами реального мира — в данном случае, «вещами» являются некие скрытые структуры «программ» нашего разума. Нет, простой формализм, подобный грамматике УСП, не породит великой музыки. Псевдо-музыка, подобная псевдо-сказкам, может получиться без труда — и это будет интересным исследованием — но секреты значения в музыке лежат гораздо глубже, чем уровень чистого синтаксиса.

Здесь я должен кое-что пояснить: в принципе, все грамматики типа УСП обладают мощью любого программирующего формализма; так что, если музыкальное значение вообще может быть как-то уловлено (мне кажется, что это возможно), то это может быть сделано в грамматике УСП. Но мне кажется, что эта грамматика будет определять не только музыкальные структуры, но и общую структуру мозга слушателя. Она будет «грамматикой мысли», а не только лишь грамматикой музыки.

ШРДЛУ, программа Винограда

Программа какого типа нужна, чтобы заставить людей признать, что она действительно что-то «понимает»? Что понадобилось бы для того, чтобы ваша интуиция не говорила бы вам, что за программой «ничего нет»?

В 1968-1970 годах Терри Виноград (он же д-р Тире-Рвинога) писал докторскую диссертацию в Массачусетском институте технологии, работая над проблемами языка и понимания. В то время в МИТе многие специалисты по ИИ работали с так называемым «миром блоков» — относительно простой областью, в которой легко было представить задачи компьютерного зрения и языка. Эта область включала стол и разноцветные блоки, похожие на игрушечные кубики — квадратные, удлиненные, треугольные, и т. д. (Иной тип «блочного мира» представлен на картине Магритта «Мысленная арифметика» (рис. 117); я нахожу это название особенно подходящим к данному контексту.) Проблемы зрения в блочном мире МИТа весьма сложны: каким образом сканирование телекамерой сцены с множеством кубиков позволяет компьютеру решить, какие типы блоков там находятся, и каково их взаимное расположение? Некоторые блоки могут лежать на других, некоторые — стоять впереди других; блоки могут отбрасывать тени и т. д.

Однако Виноград не работал над этими аспектами зрения. Он начал с предположения, что блочный мир хорошо представлен в памяти компьютера. После этого ему оставалось решить задачу о том, как заставить компьютер:

(1) понимать по-английски вопросы о ситуации;

(2) отвечать по-английски на вопросы о ситуации;

(3) понимать команды по-английски о манипуляции блоков;

(4) разбивать каждую команду на серию операций, которые он может выполнить;

(5) понимать, что он делает и с какой целью;

(6) описывать свои действия и их цель по-английски.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное