Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Наша программа не работает, сначала разделяя предложение на части, затем проводя семантический анализ и затем давая логический ответ. Когда машина пытается понять предложение, эти три действия происходят одновременно. Как только начинает вырисовываться некая синтаксическая структура, тут же вызывается семантическая программа, чтобы проверить, есть ли в этой структуре смысл; ее ответ может направлять дальнейшее синтаксическое подразделение. Решая, имеет ли данная структура смысл, семантическая программа может прибегать к логическому анализу и задавать вопросы о реальном мире. Например, в секции 34 Диалога («расположи голубую пирамиду на кубике в коробке»), первым возможным делением было «голубая пирамида на кубике». В этот момент в действие вступает семантический анализ, который определяет, что подобное деление не соответствует реальной ситуации. После этого, программа синтаксическего разбора находит следующего кандидата: «голубая пирамида»; затем она выделяет группу «на кубике в коробке» как самостоятельную фразу, указывающую на расположение… Таким образом, разные типы анализа находятся в постоянном взаимодействии, и результаты одного из них влияют на результаты других.[79]

Очень интересно то, что в естественном языке синтаксис и семантика так глубоко переплетены. В предыдущей главе, обсуждая ускользающее понятие «формы», мы подразделили его на две категории: синтаксическая форма, котоорую можно обнаружить с помощью предсказуемо конечной разрешающей процедуры, и семантическая форма, которую таким образом обнаружить нельзя. Но здесь Виноград говорит нам, что, по крайней мере, когда слова «синтаксис» и «семантика» употребляются в их обычном значении, в естественном языке они сливаются друг с другом. Внешняя форма предложения — его состав в терминах элементарных знаков — не делится так четко на синтаксический и семантический аспекты. Это очень важный для лингвистики момент. Далее приводятся заключительные замечания Винограда о ШРДЛУ.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика