Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

(Краб вертит ручки настройки.)

Комментатор: В наступление переходит великолепная шестерка Местной Команды. Мяч летит к Бибигонову —

Ахилл: Шестерка!?

Комментатор: Именно так, друзья — шестерка. Когда вы превращаете футбол в баскетбол, приходится идти на компромисс! Итак, как я говорил, мяч летит к Бибигонову, который стоит неприкрытый вблизи от кольца Гостей.

Ахилл: Давай, Бибигонов! Покажи им, где крабы зимуют!

Комментатор: Но бросок был неточен, и мяч падает прямо перед Фисташкиным; Фисташкин ведет мяч, передает Арахису, тот минует Дюймовочкина… еще два очка в пользу команды Гостей! Сегодня Местной Команде не везет… Итак, друзья, так выглядел бы этот матч, если бы команды играли в баскетбол вместо футбола.

Ленивец: Ничего себе! Вы бы еще перенесли этот матч на луну!

Краб: Сказано — сделано! Слегка подкрутим эту ручку… теперь вот эту…

(На экране появляется испещренное кратерами поле, на котором стоят две команды в скафандрах. Внезапно они приходят в движение; игроки передвигаются длинными прыжками, иногда перелетая над головой друг у друга. Один из игроков бьет по воротам; мяч взлетает в воздух, так высоко, что его почти не видно, и плавно опускается прямо в руки к вратарю.)

Комментатор: Этот гипотетический повтор, друзья, показывает вам, как проходила бы игра на луне. А теперь — небольшая реклама, приготовленная для вас теми, кто производит пиво Плюх — мой любимый сорт!

Ленивец: Если бы мне не было лень, я бы собственноручно сдал этот дефектный телевизор обратно в магазин. Но увы, такова уж моя судьба — быть Ленивцем… (Протягивает лапу к блюду с блинчиками и хватает сразу несколько штук.)

Черепаха: Это замечательное изобретение, м-р Краб. Могу ли я предложить еще один гипотетический повтор?

Краб: Разумеется!

Черепаха: Как бы выглядел этот матч в четырехмерном пространстве?

Краб: О, это не так просто, г-жа Черепаха, но для вас я попытаюсь настроить телевизор… подождите минутку.

(Он подползает к телевизору и начинает крутить ручки, на этот раз, по-видимому, выжимая из своего гипо-ТВ все, на что тот способен, нажимая на все мыслимые кнопки и не спуская глаз со шкалы настройки. Наконец, он отходит от аппарата с довольным видом.)

Думаю, что этого будет достаточно.

Комментатор: А теперь давайте посмотрим гипотетический повтор.

(На экране появляется изображение странной конфигурации изогнутых трубок. Она растет, затем уменьшается, и на секунду кажется, что она делает нечто вроде поворота. Потом она превращается в странный грибовидный объект — и затем снова в переплетение трубок. Пока с ней происходят эти метаморфозы, комментатор продолжает.)

Комментатор: Бибигонов передает гипермяч Бузюлюкину, тот приближается к штрафному объему. Удар по гиперворотам… Гооол! Вот так, мои трехмерные друзья-болельщики, выглядел бы футбол в четырех измерениях.

Ахилл: Для чего, м-р Краб, вы вертите эти ручки на панели?

Краб: Чтобы выбрать нужный гипотетический канал. Видите ли, передача ведется одновременно по множеству гипотетических каналов, и я хочу выбрать именно тот канал, который передает предложенный вами гипо-повтор.

Ахилл: А как насчет других телевизоров — возможно ли там такое?

Краб: Нет, большинство телевизоров не улавливают гипотетических каналов. Для этого нужна специальная схема, которую очень трудно сделать.

Ленивец: Откуда вы знаете, что идет по определенному каналу? Смотрите в программе ?

Краб: Мне не нужно знать номеров каналов — я настраиваюсь на нужный канал, вводя цифровой код гипотетической ситуации, которую я хочу увидеть. Технически это называется «адресацией канала по его контрафактическим параметрам». По гипотетическим каналам можно увидеть любой воображаемый мир. Номера каналов, передающие «близкие» друг к другу миры, также близки.

Черепаха: Почему вы даже не подходили к ручкам, когда мы смотрели первый гипо-повтор?

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное