Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Краб: Телевизор был настроен на канал, очень близкий к Реальности, только чуть-чуть сдвинутый в сторону. Так что время от времени там возникают гипотетические повторы, слегка отличающиеся от реальности. На Канал Реальности, знаете ли, почти невозможно настроиться точно — впрочем, это даже хорошо, поскольку там нет ничего интересного. Представляете себе, они повторяют в точности те же ситуации, которые возникают в игре — ну и скучища!

Ленивец: Что до меня, что я нахожу прескучной именно эту идею гипо-ТВ. Но, может быть, я мог бы изменить свое мнение, если бы вы показали мне хоть один ИНТЕРЕСНЫЙ гипо-повтор. Скажем, как проходила бы игра, если бы сложение не было коммутативным?

Краб: Ах, боже мой! Это слишком радикально меняет ситуацию — боюсь, что моей модели с таким заказом не справиться. Такое под силу только супергипо-ТВ — последнему слову гипо-телевидения; но, к несчастью, у меня его нет. Супергипо-ТВ способны выполнить ЛЮБУЮ просьбу.

Ленивец: Подумаешь!..

Краб: Но я могу сделать что-то ПОДОБНОЕ — не хотите ли вы увидеть, как например, проходила бы игра, если бы 13 не было простым числом?

Ленивец: Нет уж, увольте! ЭТО-ТО совершенно бессмысленно. К тому же, на месте этой последней игры, я бы уже устал от того, как компания путаников, у которых каша в голове, перебрасывает меня с канала на другой. Давайте-ка лучше досмотрим настоящий матч!

Ахилл: Скажите, а где вы достали ваш гипо-ТВ, м-р Краб?

Краб: Верите ли, мы с Ленивцем недавно были на ярмарке, где разыгрывалась лотерея — и первым призом был этот телевизор. Обычно я в подобные игры не играю, но тут что-то на меня накатило, и я купил билетик.

Ахилл: А как насчет вас, м-р Ленивец?

Ленивец: Признаюсь, и я купил один билет — только затем, чтобы ублажить старика Краба…

Краб: И когда выигрышный номер был объявлен, к моему удивлению оказалось, что первый приз достался мне!

Ахилл: Фантастика! Мне еще не приходилось своими глазами видеть человека, выигравшего что бы то ни было в лотерею.

Краб: Я и сам был поражен своей удаче.

Ленивец: Не забыли ли вы рассказать еще кое-что об этой лотерее, м-р Краб?

Краб: О, ничего существенного… Дело в том, что номер моего билета был 129, а выигрышным билетом был объявлен номер 128 — разница всего на единицу.

Ленивец: Так что, как видите, на самом деле он ничего не выиграл.

Ахилл: Но он ПОЧТИ выиграл.

Краб: Я предпочитаю говорить, что я выиграл — ведь я был к этому так близок… Если бы мой номер был на единицу меньше, выигрыш достался бы мне.

Ленивец: Но, к несчастью, м-р Краб, «почти» не считается, и в данном случае совершенно все равно, единица это была или сотня.

Черепаха: Или бесконечность А какой номер достался ВАМ, м-р Ленивец?

Ленивец: У меня был номер 256 — после 128 это следующая степень 2. Если кто-нибудь и был близок к выигрышу, так это я! К сожалению, устроители лотереи, эти упрямцы, отказались выдать мне мой заслуженный приз. Какой-то шутник сказал, что приз должен был принадлежать ЕМУ, поскольку у него оказался номер 128. Я думаю, что МОЙ номер был намного ближе к выигрышному — но разве этих бюрократов переспоришь!

Ахилл: Подождите, вы меня совсем запутали! Если, на самом деле, м-р Краб, вы не выиграли гипо-телевизора, то как же мы могли провести перед ним целый вечер? Словно мы и сами оказались в каком-то гипотетическом мире, который был бы возможен, если бы обстоятельства оказались слегка иными…

Комментатор: Так, друзья, прошел бы вечер в доме м-ра Краба, если бы он выиграл гипо-ТВ. Но поскольку этого не случилось, четверка приятелей просто провела приятный вечер, глядя, как Местная Команда была разбита в пух и прах со счетом 128 — 0. Или же счет был 256 — 0? Впрочем, какая разница, когда речь идет о пятимерном Плутонском хоккее на пару…

ГЛАВА XIX: Искусственный Интеллект: виды на будущее

Ситуации «почти» и ситуации гипотетические

ПРОЧИТАВ «КОНТРАФАКТУС», один из моих друзей сказал мне: «Мой дядя был почти президентом США!» «Правда?» — спросил я. «Конечно», — ответил он, — «он был капитаном торпедного катера ПТ108». (Джон Ф. Кеннеди был капитаном ПТ109.)

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное