Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Такой переход лежит в основе решений задач Бонгарда ##85 — 87 (рис. 125). ЗБ #85 довольно проста. Предположим, что наша программа в процессе  предварительной обработки данных узнает некий «отрезок». После этого ей легко посчитать отрезки и найти различие между классом I и классом II в ЗБ #85.

Теперь программа переходит к задаче #86. Ее основная методика состоит в том, чтобы опробовать все недавние идеи, оказавшиеся удачными. В реальном мире повторение сработавших ранее приемов часто увенчивается успехом, и Бонгард в своих задачах не стремится перехитрить этот тип эвристики—к счастью, он даже поощряет его. Таким образом, мы переходим к ЗБ #86, имея на вооружении две идеи («считать» и «отрезок»), слитые в одну: «считать отрезки». Но оказывается, что в ЗБ #86 вместо отрезков нужно считать последовательности линий. Последовательность линий здесь означает сцепление (одного или более) отрезков. Программа может догадаться об этом, например, благодаря тому, что ей известны оба понятия, «отрезок прямой» и «последовательность прямых», и что они расположены близко друг от друга в сети понятий. Другим, способом было бы изобретение понятия «последовательность прямых» — задача, мягко выражаясь, не из простых.

Далее следует ЗБ #87, в которой понятие «отрезок» обыгрывается по-иному. Когда один отрезок становится тремя? (См. рамку II-А.) Программа должна быть достаточно гибкой, чтобы переходить взад и вперед между различными описаниями данного фрагмента рисунка. Разумно сохранять в памяти старые описания, вместо того, чтобы их забывать и затем составлять снова, поскольку нет гарантии того, что новое описание окажется лучше прежнего. Таким образом, вместе с каждым старым описанием программа должна запоминать его сильные и слабые стороны. (Не правда ли, это начинает звучать довольно сложно?)


Рис. 125. Задачи Бонгарда ##85 — 87 (Из книги Бонгарда «Проблема узнавания»).

Мета-описания

Теперь мы подошли к другой жизненно важной части процесса узнавания; она имеет дело с уровнями абстракции и мета-описаниями. Для примера давайте вернемся к ЗБ #91 (рис. 121). Какой эталон можно здесь построить? С таким количеством вариантов трудно знать, откуда начинать. Но это уже само по себе является подсказкой! Это говорит нам, что различие между классами, скорее всего, существует на уровне, высшем чем уровень геометрических описаний. Это наблюдение подсказывает программе, что она может попытаться рассмотреть описания описаний — то есть мета-описания. Может быть, на этом втором уровне нам удастся обнаружить какие-либо общие черты, и, если повезет, найти достаточно сходства для того, чтобы создать эталон для мета-описаний. Таким образом, мы начинаем работу без эталона и создаем описания нескольких рамок; после того, как они закончены, мы описываем сами эти описания. Какие гнезда будут у нашего эталона для мета-описаний? Может быть, следующие:

использованные понятия: —

повторяющиеся понятия: —

названия гнезд: —

использованные фильтры: —

Существует множество других гнезд, которые могут быть использованы в мета-описаниях; это просто пример. Предположим теперь, что мы описали рамку I-Д в ЗБ #91. Ее «безэталонное» описание может выглядеть так:

горизонтальный отрезок.

вертикальный отрезок, находящийся на горизонтальном отрезке.

вертикальный отрезок, находящийся на горизонтальном отрезке.

вертикальный отрезок, находящийся на горизонтальном отрезке.

Разумеется, множество сведений было отброшено: то, что три вертикальных отрезка одинаковой длины, отстоят друг от друга на одно и то же расстояние и т. п. Но возможно и подобное описание. Мета-описание может выглядеть так:

использованные понятия: вертикальный-горизонтальный, отрезок, находящийся на

повторяющиеся понятия: 3 копии описания «вертикальный отрезок, находящийся на горизонтальном отрезке».

названия гнезд: —

использованные фильтры: —

Не все гнезда мета-описания должны быть заполнены: на этом уровне тоже возможно отбрасывание информации, как и на уровне «простого описания». Если бы мы теперь захотели составить описание и мета-описание любой другой рамки класса I, то гнездо «повторяющиеся описания» каждый раз содержало бы фразу «три копии ...» Детектор сходства заметил бы это и выбрал бы «тройничность» в качестве общей абстрактной черты рамок класса I. Таким же образом, путем мета-описаний может быть установлено, что «четверичность» — отличительная черта класса II.

Важность гибкости

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное